Based on the first-order correlation function of light,we propose analogous optical coherent states(AOCSs)sourced by partially coherent beams,which can nondiffractively propagate with sinusoidal oscillation in the har...Based on the first-order correlation function of light,we propose analogous optical coherent states(AOCSs)sourced by partially coherent beams,which can nondiffractively propagate with sinusoidal oscillation in the harmonic potential when the nondiffraction propagation matching condition(NPMC)is met.Unlike the traditional quantum coherent state,the minimum uncertainty of AOCS is related to the coherence of light,and only when the NPMC is met,its uncertainty is the least.Furthermore,based on the mathematical similarity between the Schrödinger and the Helmholtz equations,we find that our proposed AOCSs correspond to the partially coherent steady states of the harmonic oscillator.Our research not only increases the understanding of the coherence of light and enriches the types of nondiffraction beams but also increases the understanding of the quantum coherence regulating the evolution of probability waves.展开更多
Single-shot multi-frame phase imaging plays an important role in detecting continuous extreme physical phenomena,particularly suitable for measuring the density of media with non-repeatable changes and uncertainties.H...Single-shot multi-frame phase imaging plays an important role in detecting continuous extreme physical phenomena,particularly suitable for measuring the density of media with non-repeatable changes and uncertainties.However,traditional single-pattern multiplexed imaging faces challenges in retrieving amplitude and phase information of multiple frames without sacrificing spatial resolution and phase accuracy。展开更多
The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonl...The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator,and the vortex is space-time coupled.Here,we investigate the transmission of spatiotemporal vortices in the spatial fractional wave equation(FWE)and demonstrate the effects of linewidth,vortex topological charge,and linear chirp modulation on the transmission of Bessel-type spatiotemporal vortex pulses(BSTVPs).Under narrowband conditions,we find that the propagation of BSTVP in the FWE can be seen as the coherent superposition of two linearly shifted half-BSTVPs and can reveal orbital angular momentum backflow for the half-BSTVP.Our analysis can be extended to other spatiotemporal vortex pulses.展开更多
In this work, we designed and synthesized a novel spirocyclic compound functionalized spiro[fluorene-9,9'- xanthene] with carbazole group (2-carbazolyl-spiro[fluorene-9,9'-xanthene], SFX-Cz) via Friedel-Crafts and...In this work, we designed and synthesized a novel spirocyclic compound functionalized spiro[fluorene-9,9'- xanthene] with carbazole group (2-carbazolyl-spiro[fluorene-9,9'-xanthene], SFX-Cz) via Friedel-Crafts and Ullmann reaction, which is expected to own high thermal and morphological stability, and good carrier injection/ transporting properties due to the excellent hole transporting characteristics of carbazole and cruciform structure of spiro[fluorene-9,9'-xanthene]. The carbazole end-capped spiro[fluorene-9,9'-xanthene] SFX-Cz based PhOLEDs with Flrpic as phosphor emitter have been researched by varying dopant concentration, which exhibit the maximum EQEs of 8.9%, 7.4%, 9.1%, and 4.7% with the doping increasing from 10% to 50%. The higher performance PhOLEDs are independent on concentration variation from 10% to 30%, which suggests the bulky steric hindrance of SFX-Cz might be a potential canditate for high performance and inexpensive device with simplified process.展开更多
Green organic semiconductors (GOS) have the four-element features, including biomass as stuffs, synthesis with the pot, atom and step economic (PASE) route, eco-friendly fabrication processes in aqueous phase, and...Green organic semiconductors (GOS) have the four-element features, including biomass as stuffs, synthesis with the pot, atom and step economic (PASE) route, eco-friendly fabrication processes in aqueous phase, and recy- clable devices, capturing the trend of organic electronics in the future. Herein, we reviewed the efforts that have been made on GOS by our group. We first made a brief introduction of organic (opto)electronics, followed by the design strategies of GOSs based on spirofluorenes. Concretely, we described the discovery of one-pot protocol to spirofluorenres and a pot-atom-step economic (PASE) platform of spiro[fluorene-9,9'-xanthene] (SFX) for the mo- lecular design of organic semiconductors, as well as a state-of-the-art nanocrystalline films with eco-friendly pro- cedures. Then, we highlighted the progress on SFX-based organic semiconductors in the organic light-emitting di- ode (OLED) field. Finally, we conducted a summary on SFXs in OLED and an outlook on green semiconductors starting from biomass, via one-pot to spirofluorenes, to water-phase devices.展开更多
基金supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2022YFC2808203)the National Natural Science Foundation of China(Grant Nos.11474254 and 11804298).
文摘Based on the first-order correlation function of light,we propose analogous optical coherent states(AOCSs)sourced by partially coherent beams,which can nondiffractively propagate with sinusoidal oscillation in the harmonic potential when the nondiffraction propagation matching condition(NPMC)is met.Unlike the traditional quantum coherent state,the minimum uncertainty of AOCS is related to the coherence of light,and only when the NPMC is met,its uncertainty is the least.Furthermore,based on the mathematical similarity between the Schrödinger and the Helmholtz equations,we find that our proposed AOCSs correspond to the partially coherent steady states of the harmonic oscillator.Our research not only increases the understanding of the coherence of light and enriches the types of nondiffraction beams but also increases the understanding of the quantum coherence regulating the evolution of probability waves.
基金China Postdoctoral Science Foundation(2023M743252,2024T170846)Key Research and Development Program of Zhejiang Province(2024SSYS0014)National Natural Science Foundation of China(62205304).
文摘Single-shot multi-frame phase imaging plays an important role in detecting continuous extreme physical phenomena,particularly suitable for measuring the density of media with non-repeatable changes and uncertainties.However,traditional single-pattern multiplexed imaging faces challenges in retrieving amplitude and phase information of multiple frames without sacrificing spatial resolution and phase accuracy。
基金National Key Research and Development Program of China(2022YFC2808203)National Natural Science Foundation of China(11474254,11804298).
文摘The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator,and the vortex is space-time coupled.Here,we investigate the transmission of spatiotemporal vortices in the spatial fractional wave equation(FWE)and demonstrate the effects of linewidth,vortex topological charge,and linear chirp modulation on the transmission of Bessel-type spatiotemporal vortex pulses(BSTVPs).Under narrowband conditions,we find that the propagation of BSTVP in the FWE can be seen as the coherent superposition of two linearly shifted half-BSTVPs and can reveal orbital angular momentum backflow for the half-BSTVP.Our analysis can be extended to other spatiotemporal vortex pulses.
文摘In this work, we designed and synthesized a novel spirocyclic compound functionalized spiro[fluorene-9,9'- xanthene] with carbazole group (2-carbazolyl-spiro[fluorene-9,9'-xanthene], SFX-Cz) via Friedel-Crafts and Ullmann reaction, which is expected to own high thermal and morphological stability, and good carrier injection/ transporting properties due to the excellent hole transporting characteristics of carbazole and cruciform structure of spiro[fluorene-9,9'-xanthene]. The carbazole end-capped spiro[fluorene-9,9'-xanthene] SFX-Cz based PhOLEDs with Flrpic as phosphor emitter have been researched by varying dopant concentration, which exhibit the maximum EQEs of 8.9%, 7.4%, 9.1%, and 4.7% with the doping increasing from 10% to 50%. The higher performance PhOLEDs are independent on concentration variation from 10% to 30%, which suggests the bulky steric hindrance of SFX-Cz might be a potential canditate for high performance and inexpensive device with simplified process.
文摘Green organic semiconductors (GOS) have the four-element features, including biomass as stuffs, synthesis with the pot, atom and step economic (PASE) route, eco-friendly fabrication processes in aqueous phase, and recy- clable devices, capturing the trend of organic electronics in the future. Herein, we reviewed the efforts that have been made on GOS by our group. We first made a brief introduction of organic (opto)electronics, followed by the design strategies of GOSs based on spirofluorenes. Concretely, we described the discovery of one-pot protocol to spirofluorenres and a pot-atom-step economic (PASE) platform of spiro[fluorene-9,9'-xanthene] (SFX) for the mo- lecular design of organic semiconductors, as well as a state-of-the-art nanocrystalline films with eco-friendly pro- cedures. Then, we highlighted the progress on SFX-based organic semiconductors in the organic light-emitting di- ode (OLED) field. Finally, we conducted a summary on SFXs in OLED and an outlook on green semiconductors starting from biomass, via one-pot to spirofluorenes, to water-phase devices.