This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)da...This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)data during 2001-20.The average size of EC TCs is found to be similar to that over the WNP.Furthermore,the annual maximum lifetime maximum size(LMS)of EC TCs shows a statistically significant increasing trend,implying a more severe impact on the EC region.Composite analyses of intensity and size variation over the entire lifetime of TCs,before and after re-curvature,and before and after rapid intensification(RI),show that there are significant differences between them in some key areas:(1)The intensity begins to rapidly decrease after the TC has reached its highest intensity,but the size remains quasi-constant;(2)When a TC recurves south of 15°N or north of 30°N,the variation trend for both intensity and size are broadly similar before and after curvature,but their variation trends are opposite when the recurvature occurs between 15°-30°N;(3)After RI,the intensity reaches its peak value within 24 h,whereas the size reaches its LMS after30-48 h.A significant correlation is also found between the rate of change in intensity and that of size during the development stage,with a correlation coefficient of 0.67 and 0.73 for TCs in the WNP and EC,respectively.However,no significant correlation exists during the weakening stage.展开更多
This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by t...This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.展开更多
基金supported by National Natural Science Foundation of China under(Grant No.U2142206)the Shanghai Natural Science Foundation(21ZR1477300)+1 种基金Shanghai Science and Technology Commission Project(23DZ1204701)National Natural Science Foundation of China(Grant No.42075056)。
文摘This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)data during 2001-20.The average size of EC TCs is found to be similar to that over the WNP.Furthermore,the annual maximum lifetime maximum size(LMS)of EC TCs shows a statistically significant increasing trend,implying a more severe impact on the EC region.Composite analyses of intensity and size variation over the entire lifetime of TCs,before and after re-curvature,and before and after rapid intensification(RI),show that there are significant differences between them in some key areas:(1)The intensity begins to rapidly decrease after the TC has reached its highest intensity,but the size remains quasi-constant;(2)When a TC recurves south of 15°N or north of 30°N,the variation trend for both intensity and size are broadly similar before and after curvature,but their variation trends are opposite when the recurvature occurs between 15°-30°N;(3)After RI,the intensity reaches its peak value within 24 h,whereas the size reaches its LMS after30-48 h.A significant correlation is also found between the rate of change in intensity and that of size during the development stage,with a correlation coefficient of 0.67 and 0.73 for TCs in the WNP and EC,respectively.However,no significant correlation exists during the weakening stage.
文摘This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.