The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of th...The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.展开更多
This study aims to identify the highly non-specific toxic by-products during ozonation of three cresols in wastewater.In ozonated effluents,biotoxicity increased along with increasing reaction time,followed by a gradu...This study aims to identify the highly non-specific toxic by-products during ozonation of three cresols in wastewater.In ozonated effluents,biotoxicity increased along with increasing reaction time,followed by a gradual decrease.The peak biotoxicity for ozonated o-cresol(o-C),m-cresol(m-C),and p-cresol(p-C)was estimated to be 17.4,14.8 and 5.5 times higher than that of untreated wastewater,respectively.A redox-directed approach with high-resolution mass spectrometry detection and toxicity prediction revealed that monomeric para-benzoquinones(p-BQs),hydroxylated p-BQs,and dimeric p-BQs in ozonated cresols were the primary contributors to the increased toxicity.Calculations based on density functional theory indicated formation pathways of p-BQs byproducts,e.g.,the formation of 2-methyl-p-benzoquinone was likely induced by ozone molecules rather than hydroxyl radicals in ozonated o-C and m-C,and the formation of p-BQs during ozonation of p-C was attributed to the oxidation of methyl group to carboxyl group and subsequent decarboxylation initiated by hydroxyl radicals.Electron paramagnetic resonance and spin density calculation showed that the presence of carbon-centered cresoxyl radicals was responsible for dimeric p-BQs formation.Collectively,these results underscore significant contribution of non-halogenated p-BQs to non-specific toxicity increase in ozonated effluents.展开更多
Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal ...Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance.展开更多
Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in t...Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in traditional slurry-coated anodes,such as agglomeration and low adhesive strength,through the application of laser powder bed fusion(LPBF).The process involves fabricating an Al-Si-Cu alloy layer on a Cu foil current collector,followed by dealloying to create a porous Si-Cu anode.Simulated and experimental results demonstrate successful alloy layer formation through optimized laser spot(55μm)and powder sizes(1-5μm).Controlled cooling produces primary Si particles ranging from 150 nm to 1μm.The resulting microstructure enhances electrochemical performance,particularly by tailoring the size of primary Si.The resultant porous Si-Cu anode,featuring uniformly distributed primary Si(200 nm)metallurgically bonded with Cu networks,exhibits an initial coulombic efficiency of 83% and a remarkable capacity retention of 80% after 300 cycles at 2 C.In-situ and ex-situ observations confirm the crucial role of anode architecture in performance enhancement.This study elucidates the influence of the LPBF microstructure on anode performance and broadens the potential application of laser powder bed fusion in battery manufacturing.展开更多
Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging an...Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.展开更多
As a new type of carbon-based fluorescent nanomaterials, carbon dots(CDs) are provided with the advantages of small size, excellent photoluminescence(PL) property, easy surface modification, robust stability,good wate...As a new type of carbon-based fluorescent nanomaterials, carbon dots(CDs) are provided with the advantages of small size, excellent photoluminescence(PL) property, easy surface modification, robust stability,good water solubility and biocompatibility, which endow them with great potential in sensing. In this review, we first describe the preparation of CDs from different starting materials via various techniques, and pre-/post-modification strategies to modulate their PL properties. Second, we outline the optical properties of CDs, including UV-vis absorption and PL, especially the PL mechanisms of CDs are presented in detail from the size effect, molecular state, surface state and defect state. Third, we summarize the research progress of CDs in sensing environmental pollutants, bioactive substances, biological microenvironments,bacteria and viruses via different mechanisms. In addition, we envision the future development trends and prospects for CDs-based nanosensors. We believe that this type of small nanoparticles will bring about big prospect in the near future.展开更多
Macro-mesoporous γ-alumina support(MMA) was prepared by a sol-gel route in aqueous medium using pseudo-boehmite as aluminum source and polystyrene microspheres and Pluronic P123 as hard and soft dual templates,resp...Macro-mesoporous γ-alumina support(MMA) was prepared by a sol-gel route in aqueous medium using pseudo-boehmite as aluminum source and polystyrene microspheres and Pluronic P123 as hard and soft dual templates,respectively.MMA had a BET specific surface area of about 259 m2 g-1,total pore volume of about 1.61 cm3 g-1,macropore diameter of about 102 nm,and mesopore diameter of about 14 nm.Re2O7/MMA and conventional Re2O7/Al2O3 were prepared by a incipient-wetness impregnation method,and their catalytic performances in the metathesis of 1-butene and 2-butene were tested in a fixed-bed tubular reactor.The result showed that Re2O7/MMA possessed higher activity and far longer working life-span than conventional Re2O7/Al2O3.展开更多
In this study,Cu/Ni-La_(0.7)Sr_(0.3)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) catalysts were synthesized via the citric acid-nitrate process(CNP) and chemical co-precipitation. The catalytic performance of Cu/Ni-LSCM catalysts o...In this study,Cu/Ni-La_(0.7)Sr_(0.3)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) catalysts were synthesized via the citric acid-nitrate process(CNP) and chemical co-precipitation. The catalytic performance of Cu/Ni-LSCM catalysts on dry methane reforming was evaluated in a fixed-bed reactor at 550/650 ℃ and atmosphere pressure. Cu/Ni loading was investigated as an influencing factor, which led to 5 cases of samples according to the different Cu/Ni mass ratios. The catalysts were characterized by X-ray diffraction(XRD), field emissionscanning electron microscope(FE-SEM), Brunauer-Emmett-Teller(BET) measurement, X-ray photoelectron spectroscopy(XPS), hydrogen-based temperature-programmed reduction(H_2-TPR) and thermos gravimetric analyzer(TGA). The results show that the methane conversion increases, the resistance against metal sintering increases and the carbon deposition drops after the copper is introduced. This optimum performance can be obtained under Case 3(Cu:Ni:LSCM = 1:3:6 in mass ratio).展开更多
Mesoporous γ-aluminas with large pore size (up to 19 nm, denoted as MAI9) are prepared from dispersed pseudo-boehmite using pluronic P123 as template. It is found that these mesoporous alumina supported rhenium oxi...Mesoporous γ-aluminas with large pore size (up to 19 nm, denoted as MAI9) are prepared from dispersed pseudo-boehmite using pluronic P123 as template. It is found that these mesoporous alumina supported rhenium oxide catalysts were more active and have far longer working life-span in gas-phase metathesis of 1-butene and 2-butene to propene than rhenium oxide on conventional alumina with small pore size (5 nm). At 60 ℃ and atmospheric pressure with WHSV = 1 h^-1, the similar stable conversions of butene (ca. 55%) for all the 13 wt% Re207/alumina catalysts were obtained near the chemical equilibrium, and the stable working life-spans of Re2OT/MA19 were far longer than that of Re2O7/A1203, being about 70 h and 20 h, respectively.展开更多
High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, d...High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.展开更多
Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In th...Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically.展开更多
基金partly supported by the Yan’an University Qin Chuanyuan“Scientist+Engineer”Team Special Fund,No.2023KXJ-012(to YL)Yan’an University Transformation of Scientific and Technological Achievements Fund,No.2023CGZH-001(to YL)+2 种基金College Students Innovation and Entrepreneurship Training Program,Nos.D2023158,202410719056(to XS,JM)Yan’an University Production and Cultivation Project,No.CXY202001(to YL)Kweichow Moutai Hospital Research and Talent Development Fund Project,No.MTyk2022-25(to XO)。
文摘The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.
基金supported by the National Natural Science Foundation of China(Nos.52270073 and 51708292)。
文摘This study aims to identify the highly non-specific toxic by-products during ozonation of three cresols in wastewater.In ozonated effluents,biotoxicity increased along with increasing reaction time,followed by a gradual decrease.The peak biotoxicity for ozonated o-cresol(o-C),m-cresol(m-C),and p-cresol(p-C)was estimated to be 17.4,14.8 and 5.5 times higher than that of untreated wastewater,respectively.A redox-directed approach with high-resolution mass spectrometry detection and toxicity prediction revealed that monomeric para-benzoquinones(p-BQs),hydroxylated p-BQs,and dimeric p-BQs in ozonated cresols were the primary contributors to the increased toxicity.Calculations based on density functional theory indicated formation pathways of p-BQs byproducts,e.g.,the formation of 2-methyl-p-benzoquinone was likely induced by ozone molecules rather than hydroxyl radicals in ozonated o-C and m-C,and the formation of p-BQs during ozonation of p-C was attributed to the oxidation of methyl group to carboxyl group and subsequent decarboxylation initiated by hydroxyl radicals.Electron paramagnetic resonance and spin density calculation showed that the presence of carbon-centered cresoxyl radicals was responsible for dimeric p-BQs formation.Collectively,these results underscore significant contribution of non-halogenated p-BQs to non-specific toxicity increase in ozonated effluents.
基金supported by the National Natural Science Foundation of China(22379111 and 22179093)。
文摘Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance.
基金financially supported by the National Key Research and Development Program of China(2022YFB4602700)the National Natural Science Foundation of China(No.51975018)the Beijing Natural Science Foundation(No.2244085).
文摘Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in traditional slurry-coated anodes,such as agglomeration and low adhesive strength,through the application of laser powder bed fusion(LPBF).The process involves fabricating an Al-Si-Cu alloy layer on a Cu foil current collector,followed by dealloying to create a porous Si-Cu anode.Simulated and experimental results demonstrate successful alloy layer formation through optimized laser spot(55μm)and powder sizes(1-5μm).Controlled cooling produces primary Si particles ranging from 150 nm to 1μm.The resulting microstructure enhances electrochemical performance,particularly by tailoring the size of primary Si.The resultant porous Si-Cu anode,featuring uniformly distributed primary Si(200 nm)metallurgically bonded with Cu networks,exhibits an initial coulombic efficiency of 83% and a remarkable capacity retention of 80% after 300 cycles at 2 C.In-situ and ex-situ observations confirm the crucial role of anode architecture in performance enhancement.This study elucidates the influence of the LPBF microstructure on anode performance and broadens the potential application of laser powder bed fusion in battery manufacturing.
基金supported by the Hubei Province Nature Science Foundation of China(Grant No.:2023AFB1077)the National Natural Science Foundation of China(Grant No.:82003308)+2 种基金the Doctoral Start-up Fund Project of Hubei University of Science and Technology,China(Grant No.:BK202118)the Innovation team and Medical research program of Hubei University of Science and Technology,China(Grant Nos.:2023T10 and 2022YKY05)the Hubei Province Key R&D Plan Big Health Local Special Project,China(Grant No.:2022BCE042).
文摘Transcatheter arterial embolization(TAE)is the mainstay for treating advanced hepatocellular carcinoma(HCC),and the performance of the embolization material is crucial in TAE.With the development of medical imaging and the birth of“X-ray-free”technologies,we designed a new dual-mode imaging material of dimethoxy tetraphenyl ethylene(DMTPE)via emulsification by mixing poly(N-isopropylacrylamide-co-acrylic acid)(PNA)with lipiodol and fluorocarbons,which was evaluated for temperature sensitivity,stability,and dual-mode visualization in vitro.Additionally,blood vessel casting embolization and renal artery imaging were assessed in healthy rabbits.In a rabbit model with a VX2 tumor,the effectiveness of TAE for treating HCC was examined,with an emphasis on evaluating long-term outcomes of embolization and its effects on tumor growth,necrosis,and proliferation through imaging techniques.In vitro experiments confirmed that the temperature-sensitive dual-oil-phase Pickering emulsion had good flow,stable contrast,and embolism when the oil-to-oil ratio and water-to-oil ratio were both 7:3(v/v)and stabilized with 8%PNA.Similarly,in vivo,arterial embolization confirmed the excellent properties of DMTPE prepared at the abovementioned ratios.It was observed that DMTPE not only has an antitumor effect but can also achieve dual imaging using X-rays and ultrasound,making it a promising excellent vascular embolization material for TAE in tumor treatment.
基金The financial support from the National Natural Science Foundation of China (No. 51873023)the Jilin Province Science and Technology Research Project (No. 20200201088JC)。
文摘As a new type of carbon-based fluorescent nanomaterials, carbon dots(CDs) are provided with the advantages of small size, excellent photoluminescence(PL) property, easy surface modification, robust stability,good water solubility and biocompatibility, which endow them with great potential in sensing. In this review, we first describe the preparation of CDs from different starting materials via various techniques, and pre-/post-modification strategies to modulate their PL properties. Second, we outline the optical properties of CDs, including UV-vis absorption and PL, especially the PL mechanisms of CDs are presented in detail from the size effect, molecular state, surface state and defect state. Third, we summarize the research progress of CDs in sensing environmental pollutants, bioactive substances, biological microenvironments,bacteria and viruses via different mechanisms. In addition, we envision the future development trends and prospects for CDs-based nanosensors. We believe that this type of small nanoparticles will bring about big prospect in the near future.
基金supported by the National Natural Science Foundation of China (Grant No:20976192)SINOPEC Jiujiang Petrochemical Company (G2810-09-ZS-0027)
文摘Macro-mesoporous γ-alumina support(MMA) was prepared by a sol-gel route in aqueous medium using pseudo-boehmite as aluminum source and polystyrene microspheres and Pluronic P123 as hard and soft dual templates,respectively.MMA had a BET specific surface area of about 259 m2 g-1,total pore volume of about 1.61 cm3 g-1,macropore diameter of about 102 nm,and mesopore diameter of about 14 nm.Re2O7/MMA and conventional Re2O7/Al2O3 were prepared by a incipient-wetness impregnation method,and their catalytic performances in the metathesis of 1-butene and 2-butene were tested in a fixed-bed tubular reactor.The result showed that Re2O7/MMA possessed higher activity and far longer working life-span than conventional Re2O7/Al2O3.
基金Project supported by National Natural Science Foundation of China(51764028)Nature Science of Yunnan Province(2016FB080)
文摘In this study,Cu/Ni-La_(0.7)Sr_(0.3)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) catalysts were synthesized via the citric acid-nitrate process(CNP) and chemical co-precipitation. The catalytic performance of Cu/Ni-LSCM catalysts on dry methane reforming was evaluated in a fixed-bed reactor at 550/650 ℃ and atmosphere pressure. Cu/Ni loading was investigated as an influencing factor, which led to 5 cases of samples according to the different Cu/Ni mass ratios. The catalysts were characterized by X-ray diffraction(XRD), field emissionscanning electron microscope(FE-SEM), Brunauer-Emmett-Teller(BET) measurement, X-ray photoelectron spectroscopy(XPS), hydrogen-based temperature-programmed reduction(H_2-TPR) and thermos gravimetric analyzer(TGA). The results show that the methane conversion increases, the resistance against metal sintering increases and the carbon deposition drops after the copper is introduced. This optimum performance can be obtained under Case 3(Cu:Ni:LSCM = 1:3:6 in mass ratio).
基金financially supported by SINOPEC Jiujiang Petrochemical Company and from the National Nature Science Foundation of China (No.20976192)
文摘Mesoporous γ-aluminas with large pore size (up to 19 nm, denoted as MAI9) are prepared from dispersed pseudo-boehmite using pluronic P123 as template. It is found that these mesoporous alumina supported rhenium oxide catalysts were more active and have far longer working life-span in gas-phase metathesis of 1-butene and 2-butene to propene than rhenium oxide on conventional alumina with small pore size (5 nm). At 60 ℃ and atmospheric pressure with WHSV = 1 h^-1, the similar stable conversions of butene (ca. 55%) for all the 13 wt% Re207/alumina catalysts were obtained near the chemical equilibrium, and the stable working life-spans of Re2OT/MA19 were far longer than that of Re2O7/A1203, being about 70 h and 20 h, respectively.
文摘High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.
基金National Key R&D Program of China,Grant/Award Number:2021YFF0500700Fundamental Research Funds for the Central Universities,Grant/Award Numbers:30921013103,30920041113+1 种基金Jiangsu Natural Science Foundation,Grant/Award Number:BK20190460National Natural Science Foundation of China,Grant/Award Numbers:51888103,52006105,92163124。
文摘Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically.