In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lase...In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.展开更多
We report low-noise, high-performance single transverse mode 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on silicon(Si) using molecular beam epitaxy. The fabricated narrow-ridge-waveguide Fabry–Perot(FP...We report low-noise, high-performance single transverse mode 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on silicon(Si) using molecular beam epitaxy. The fabricated narrow-ridge-waveguide Fabry–Perot(FP) lasers have achieved a room-temperature continuous-wave(CW) threshold current of 12.5 mA and high CW temperature tolerance up to 90°C. An ultra-low relative intensity noise of less than-150 dB∕Hz is measured in the 4–16 GHz range. Using this low-noise Si-based laser, we then demonstrate 25.6 Gb/s data transmission over13.5 km SMF-28. These low-cost FP laser devices are promising candidates to provide cost-effective solutions for use in uncooled Si photonics transmitters in inter/hyper data centers and metropolitan data links.展开更多
基金financial support from the UK EPSRC under grant No. EP/P006973/1the EPSRC National Epitaxy Facility European project H2020-ICT-PICTURE (780930)+2 种基金the Royal Academy of Engineering (RF201617/16/28)Investissments d’avenir (IRT Nanoelec: ANR-10-IRT-05 and Need for IoT: ANR-15-IDEX-02)the Chinese Scholarship Council for funding
文摘In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/P006973/1)Royal Academy of Engineering(RF201617/16/28)Chinese Scholarship Council
文摘We report low-noise, high-performance single transverse mode 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on silicon(Si) using molecular beam epitaxy. The fabricated narrow-ridge-waveguide Fabry–Perot(FP) lasers have achieved a room-temperature continuous-wave(CW) threshold current of 12.5 mA and high CW temperature tolerance up to 90°C. An ultra-low relative intensity noise of less than-150 dB∕Hz is measured in the 4–16 GHz range. Using this low-noise Si-based laser, we then demonstrate 25.6 Gb/s data transmission over13.5 km SMF-28. These low-cost FP laser devices are promising candidates to provide cost-effective solutions for use in uncooled Si photonics transmitters in inter/hyper data centers and metropolitan data links.