From the variable separation solution and by selecting appropriate functions, a new class of localized coherent structures consisting of solitons in various types are found in the (2+1)-dimensional long-wave-short-wav...From the variable separation solution and by selecting appropriate functions, a new class of localized coherent structures consisting of solitons in various types are found in the (2+1)-dimensional long-wave-short-wave resonance interaction equation. The completely elastic and non-elastic interactive behavior between the dromion and compacton, dromion and peakon, as well as between peakon and compacton are investigated. The novel features exhibited by these new structures are revealed for the first time.展开更多
By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equ...By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.展开更多
By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion,...By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion, lumps, ring soliton and oscillated dromion, breathers solution, fractal-dromion, fractal-lump and chaotic soliton structures can be easily constructed by selecting the arbitrary functions appropriately, a new novel class of coherent localized structures like peakon solution and compacton solution of this new system are found by selecting apfropriate functions.展开更多
文摘From the variable separation solution and by selecting appropriate functions, a new class of localized coherent structures consisting of solitons in various types are found in the (2+1)-dimensional long-wave-short-wave resonance interaction equation. The completely elastic and non-elastic interactive behavior between the dromion and compacton, dromion and peakon, as well as between peakon and compacton are investigated. The novel features exhibited by these new structures are revealed for the first time.
文摘By the use of the extended homogenous balance method,the B(?)cklund transformation for a (2+1)- dimensional integrable model,the(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation,is obtained,and then the NNV equation is transformed into three equations of linear,bilinear,and tri-linear forms,respectively.From the above three equations,a rather general variable separation solution of the model is obtained.Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.
文摘By means of the Baecklund transformation, a quite general variable separation solution of the (2+1)-dimensional Maccari systems is derived. In addition to some types of the usual localized excitations such as dromion, lumps, ring soliton and oscillated dromion, breathers solution, fractal-dromion, fractal-lump and chaotic soliton structures can be easily constructed by selecting the arbitrary functions appropriately, a new novel class of coherent localized structures like peakon solution and compacton solution of this new system are found by selecting apfropriate functions.