The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subdu...The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3~=1.8 Ma and 229.9~1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene (47-52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features (A/CNK〈I.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive till(t) values ranging from +13.91 to +15.54 (mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma (mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic (-230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous sub- terranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.展开更多
The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. ...The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. In this study, we present new zircon U-Pb dating, along with geochemical and Sr-Nd-Hf isotopic data for granites from the Tengchong–Lianghe granitoid belt(as abbreviated to Tengliang belt) and West Yingjiang batholiths from the Tengchong block. The mineralogical and geochemical features of the Tengliang granites and the West Yingjiang batholiths are ascribed to aluminous S-type granites and weak peraluminous I-type, respectively. Zircon U-Pb analyses yielded consistent ages ranging from 67.5 Ma, 68.4 Ma and 66.2 Ma from the Tengliang granitoid belt and 50.4 Ma to 60.8 Ma for three samples from the west Yingjiang batholiths. The Tengliang granites were emplaced during the Late Cretaceous(68-66 Ma) and demonstrate negative ε_(Hf)(t) values(-24 to-4) and initial ~(87)Sr/~(86)Sr ratios of 0.7101–0.7139 and significant negative ε_(Nd)(t) values from-8.91 to-13.2, indicating a Proterozoic sedimentary source or enriched components. The hornblende-bearing I-type granites from West Yingjiang are characterized by lower initial ~(87)Sr/~(86)Sr ratios of 0.7076–0.7106, compared to Tengliang granite and negative whole-rock ε_(Nd)(t) values from-4.0 to-11.9. The early Eocene west Yingjiang gneissic granites show wide ranges of ε_(Hf)(t) values from +7.4 to-8.5 and T_(2DM) of 1.30–0.65 Ga, indicating partial melting of ancient crust with contributions of depleted mantle materials. In combination with the regional background and previous studies, we propose that such a spatio-temporal distribution of the Tengchong granitoid belt might be related to the rollback or angleswitching of the Neo-Tethyan subducting slab. This study sheds new light on the evolutionary history of the Tengchong block.展开更多
基金supported by the China Postdoctoral Science Foundation(M2017612220)the Shandong Province Natural Science Foundation(Doctoral Funds,ZR2017BD033)
文摘The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3~=1.8 Ma and 229.9~1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene (47-52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features (A/CNK〈I.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive till(t) values ranging from +13.91 to +15.54 (mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma (mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic (-230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous sub- terranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.
基金the financial support provided by the open fund from the Key Laboratory of Deep-Earth Dynamics of the Ministry of Natural Resources, Institute of Geology, as well as Chinese Academy of Geological Sciences (Grant No. J1901-16)the State Key Laboratory for Mineral Deposits Research, Nanjing University (Grant No. 2020-LAMD-K04)+1 种基金the National Natural Science Foundation of China (Grant No. 41403029)The support provided by the China Scholarship Council (CSC) during a visit to the University of Arizona (201709110012)。
文摘The Cenozoic geological hallmark of Western Yunnan is the characteristic voluminous Late Cretaceous-Eocene granites;however, their geological background and petrogenesis have not been well constrained and elucidated. In this study, we present new zircon U-Pb dating, along with geochemical and Sr-Nd-Hf isotopic data for granites from the Tengchong–Lianghe granitoid belt(as abbreviated to Tengliang belt) and West Yingjiang batholiths from the Tengchong block. The mineralogical and geochemical features of the Tengliang granites and the West Yingjiang batholiths are ascribed to aluminous S-type granites and weak peraluminous I-type, respectively. Zircon U-Pb analyses yielded consistent ages ranging from 67.5 Ma, 68.4 Ma and 66.2 Ma from the Tengliang granitoid belt and 50.4 Ma to 60.8 Ma for three samples from the west Yingjiang batholiths. The Tengliang granites were emplaced during the Late Cretaceous(68-66 Ma) and demonstrate negative ε_(Hf)(t) values(-24 to-4) and initial ~(87)Sr/~(86)Sr ratios of 0.7101–0.7139 and significant negative ε_(Nd)(t) values from-8.91 to-13.2, indicating a Proterozoic sedimentary source or enriched components. The hornblende-bearing I-type granites from West Yingjiang are characterized by lower initial ~(87)Sr/~(86)Sr ratios of 0.7076–0.7106, compared to Tengliang granite and negative whole-rock ε_(Nd)(t) values from-4.0 to-11.9. The early Eocene west Yingjiang gneissic granites show wide ranges of ε_(Hf)(t) values from +7.4 to-8.5 and T_(2DM) of 1.30–0.65 Ga, indicating partial melting of ancient crust with contributions of depleted mantle materials. In combination with the regional background and previous studies, we propose that such a spatio-temporal distribution of the Tengchong granitoid belt might be related to the rollback or angleswitching of the Neo-Tethyan subducting slab. This study sheds new light on the evolutionary history of the Tengchong block.