In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering...In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.展开更多
High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall...High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.展开更多
基金supported by the Science and Technology Development Plan Project of Jilin Provincial Department of Science and Technology (No.20220203112S)the Jilin Provincial Department of Education Science and Technology Research Project (No.JJKH20210039KJ)。
文摘In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds.
基金supported by the National Natural Science Foundation of China(Grant Nos.62205259,62075175,62105254,and 62375212)the National Key Laboratory of Infrared Detection Technologies(Grant No.IRDT-23-06)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.XJSJ24028,XJS222202,ZYTS24097,and ZYTS24095)the Open Research Fund of Beijing Key Laboratory of Advanced Optical Remote Sensing Technology.
文摘High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.