The mechanism of high yield of winter wheat in the field at late growth period was investigated by measuring the photosynthetic characteristics of photosystem Ⅱ (PSⅡ) and xanthophylls cycle, which could provide ph...The mechanism of high yield of winter wheat in the field at late growth period was investigated by measuring the photosynthetic characteristics of photosystem Ⅱ (PSⅡ) and xanthophylls cycle, which could provide physiological reference for breeding. Weimai 8 (W8), a super high yield cultivar, and Lumai 14 (L14), a control cultivar were object. The photosynthetic rate (Pn), parameters of chlorophyll fluorescence and chlorophyll content were measured. The Pn, maximum photochemical efficiency of PSII (Fv/Fm), quantum yield of PSII electron transport (ΦPSⅡ), efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), and photochemical quenching coefficient (qP) were higher in Weimai 8 compared to that in Lumai 14, a commercial high yield cultivar. Furthermore, Weirnai 8 showed a lower non- photochemical quenching coefficient and a lower de-epoxidized ratio of the xanthophyll cycle pigments than of Lumai 14 at late growth period. At mature stage, chlorophyll content of different leaves decreased both in Weimai 8 and Lumai 14. Chlorophyll content in flag, second and third leaf from the top of plant decreased more in Lumai 14 than in Weimai 8. These results suggested that Weimai 8 had more antenna pigments to absorb light energy, and had higher photosynthetic capability and photochemical efficiency of PSⅡ. The yield of Weimai 8 was also higher than that of Lumai 14.展开更多
Chinese cherry (Prunus pseudocerasus L.) is an allotetraploid species and exhibits natural self-compatibility.However,the full-length cDNA sequences,functional analysis and the transcripts of S-RNase alleles in Chin...Chinese cherry (Prunus pseudocerasus L.) is an allotetraploid species and exhibits natural self-compatibility.However,the full-length cDNA sequences,functional analysis and the transcripts of S-RNase alleles in Chinese cherry cultivars are not known.In the two cultivars Taixiaohongying and Laiyang Short Cherry with S1S2S3S4 genotypes,two S-RNases were transcribed in Northern blotting,and the two full-length cDNAs of S-RNase were cloned and analyzed.As the result,the transcribed S-RNases were S1-RNase and S2-RNase.The two complete cDNA sequences of S1-RNase and S2-RNase were registered as EU073938 and EU073939,respectively,and had characteristic structure of rosaceous S-RNases based on their sequences indicating that they had normal function for S-RNase in the style.The S3-RNase and S4-RNase were not transcribed in the style and were nonfunctional for S-RNase,so S3m and S4m could be used to represent the nonfunctional S3-RNase and S4-RNase.The phylogenetic analysis implied that the S-RNases of Prunus,including Chinese cherry,had lower intra-specific similarity and diverged earlier than the divergence of species in Prunus.展开更多
基金supported by the Key Project of Shandong Agriculture: Breeding Technology Research of Super Wheat for High Yield and High Qulity, China([2006]6), the Opening Foundation of the State Key Laboratory of Crop Biology, China (2008KF03)the Postdoctor Innovative Foundation of Shandong Province, China (200802009)+2 种基金the National Basic Re-search of China (973 Program, 2009CB118500)the National Natural Science Foundation of China(30871458)the Program for Changjiang Scholarsand Innovative Research Team in University, China(IRT0635)
文摘The mechanism of high yield of winter wheat in the field at late growth period was investigated by measuring the photosynthetic characteristics of photosystem Ⅱ (PSⅡ) and xanthophylls cycle, which could provide physiological reference for breeding. Weimai 8 (W8), a super high yield cultivar, and Lumai 14 (L14), a control cultivar were object. The photosynthetic rate (Pn), parameters of chlorophyll fluorescence and chlorophyll content were measured. The Pn, maximum photochemical efficiency of PSII (Fv/Fm), quantum yield of PSII electron transport (ΦPSⅡ), efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), and photochemical quenching coefficient (qP) were higher in Weimai 8 compared to that in Lumai 14, a commercial high yield cultivar. Furthermore, Weirnai 8 showed a lower non- photochemical quenching coefficient and a lower de-epoxidized ratio of the xanthophyll cycle pigments than of Lumai 14 at late growth period. At mature stage, chlorophyll content of different leaves decreased both in Weimai 8 and Lumai 14. Chlorophyll content in flag, second and third leaf from the top of plant decreased more in Lumai 14 than in Weimai 8. These results suggested that Weimai 8 had more antenna pigments to absorb light energy, and had higher photosynthetic capability and photochemical efficiency of PSⅡ. The yield of Weimai 8 was also higher than that of Lumai 14.
基金supported by the National 863 Program of China (2006AA100108)the Doctoral Fund of Shandong Province,China (2006BS06021)Fine Cultivar Program of Shandong Province,China
文摘Chinese cherry (Prunus pseudocerasus L.) is an allotetraploid species and exhibits natural self-compatibility.However,the full-length cDNA sequences,functional analysis and the transcripts of S-RNase alleles in Chinese cherry cultivars are not known.In the two cultivars Taixiaohongying and Laiyang Short Cherry with S1S2S3S4 genotypes,two S-RNases were transcribed in Northern blotting,and the two full-length cDNAs of S-RNase were cloned and analyzed.As the result,the transcribed S-RNases were S1-RNase and S2-RNase.The two complete cDNA sequences of S1-RNase and S2-RNase were registered as EU073938 and EU073939,respectively,and had characteristic structure of rosaceous S-RNases based on their sequences indicating that they had normal function for S-RNase in the style.The S3-RNase and S4-RNase were not transcribed in the style and were nonfunctional for S-RNase,so S3m and S4m could be used to represent the nonfunctional S3-RNase and S4-RNase.The phylogenetic analysis implied that the S-RNases of Prunus,including Chinese cherry,had lower intra-specific similarity and diverged earlier than the divergence of species in Prunus.