The cooling rate during vitrification is critical for determining the mechanical properties of metallic glasses.However,the structural origin of the cooling rate effect on mechanical behaviors is unclear.In this work,...The cooling rate during vitrification is critical for determining the mechanical properties of metallic glasses.However,the structural origin of the cooling rate effect on mechanical behaviors is unclear.In this work,a systematical investigation of the cooling rate effect on the deformation mode,shear band nucleation,and nanoscale heterogeneous structure was conducted in three Fe-based metallic glasses.The brittle to ductile deformation transition was observed when increasing the cooling rate.Meanwhile,the governing shear band nucleation site from high load site to low load site appears the synchronous tran-sition.By studying the corresponding nanoscale heterogeneous structure,it was found that nanoscale viscoelastic transition from solid-like to liquid-like as increasing cooling rate enables ductile deformation.The current work not only reveals the nanoscale structural origin of the cooling rate effect on the de-formation behaviors,but also provides a new route to design ductile metallic glasses by freezing more nanoscale liquid-like regions during cooling.展开更多
基金supported by the National Natural Science Foun-dation of China(Nos.52201194,52222105,52261028,52001269,92163108,52231006)the 3315 Innovation Youth Talent in Ningbo City(No.2021A123G)+3 种基金the Youth Innovation Promotion Association CAS(No.2019296)the Zhejiang Provincial Natural Science Foun-dation of China(No.LR22E010004)the Zhejiang Provincial Natu-ral Science Foundation Regional Innovation and Development Joint Foundation with Quzhou City(No.LZY23E010002)the Nat-ural Science Foundation of Xinjiang Uygur Autonomous Region of China(No.2022D01C383).
文摘The cooling rate during vitrification is critical for determining the mechanical properties of metallic glasses.However,the structural origin of the cooling rate effect on mechanical behaviors is unclear.In this work,a systematical investigation of the cooling rate effect on the deformation mode,shear band nucleation,and nanoscale heterogeneous structure was conducted in three Fe-based metallic glasses.The brittle to ductile deformation transition was observed when increasing the cooling rate.Meanwhile,the governing shear band nucleation site from high load site to low load site appears the synchronous tran-sition.By studying the corresponding nanoscale heterogeneous structure,it was found that nanoscale viscoelastic transition from solid-like to liquid-like as increasing cooling rate enables ductile deformation.The current work not only reveals the nanoscale structural origin of the cooling rate effect on the de-formation behaviors,but also provides a new route to design ductile metallic glasses by freezing more nanoscale liquid-like regions during cooling.