23K2O·27Nb2O5·50SiO 2(KNS),13K2O·10Na2O·27Nb2O5·50SiO 2(KNaNS) and 15K2O·12Li2O·27Nb2O5·46SiO2(KLiNS) transparent glasses were synthesized by melt-quenching technique,and ...23K2O·27Nb2O5·50SiO 2(KNS),13K2O·10Na2O·27Nb2O5·50SiO 2(KNaNS) and 15K2O·12Li2O·27Nb2O5·46SiO2(KLiNS) transparent glasses were synthesized by melt-quenching technique,and studied by differential thermal analysis(DTA),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) to reveal the effect of the devitrification behaviour on transparent nanostructure.Just above the glass transition temperature T g in the KNS glass,an unidentified phase was formed,while in KNaNS and KLiNS,mixed-alkali niobate phases with tungsten bronze structure were obtained by bulk crystallization.Heat treatments at T g performed on the KNS glass resulted in the transparent nanostructure with second order harmonic generation(SHG) activity.Heat treatment for 10 h on KNaNS and KLiNS decreased the first DTA exothermic peaks(at least 24C),indicating the bulk nucleation,which was confirmed by the DTA in comparison with the powdered as-quenched samples.KNaNS and KLiNS showed similar XRD profiles as the K3Li2Nb5O15 crystal with the five most intense peaks at 22.7,29.4,32.3,46.3 and 52.0 deg.HRTEM micrograph showed clear-cut nano-sized circular domains and spherical nanocrystals dispersed into the amorphous matrix.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
文摘23K2O·27Nb2O5·50SiO 2(KNS),13K2O·10Na2O·27Nb2O5·50SiO 2(KNaNS) and 15K2O·12Li2O·27Nb2O5·46SiO2(KLiNS) transparent glasses were synthesized by melt-quenching technique,and studied by differential thermal analysis(DTA),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) to reveal the effect of the devitrification behaviour on transparent nanostructure.Just above the glass transition temperature T g in the KNS glass,an unidentified phase was formed,while in KNaNS and KLiNS,mixed-alkali niobate phases with tungsten bronze structure were obtained by bulk crystallization.Heat treatments at T g performed on the KNS glass resulted in the transparent nanostructure with second order harmonic generation(SHG) activity.Heat treatment for 10 h on KNaNS and KLiNS decreased the first DTA exothermic peaks(at least 24C),indicating the bulk nucleation,which was confirmed by the DTA in comparison with the powdered as-quenched samples.KNaNS and KLiNS showed similar XRD profiles as the K3Li2Nb5O15 crystal with the five most intense peaks at 22.7,29.4,32.3,46.3 and 52.0 deg.HRTEM micrograph showed clear-cut nano-sized circular domains and spherical nanocrystals dispersed into the amorphous matrix.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.