期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Towards high-performance,efficient and sustainable material processing technologies for aerospace applications
1
作者 Jun MA m.w.fu +1 位作者 Stefania BRUSCHI Heng LI 《Chinese Journal of Aeronautics》 2025年第1期1-2,共2页
The aerospace and aviation industry has long been at the forefront of materials and processing technologies,driven by its ongoing demand for lightweight,highly reliable,and durable components.Precision manufacturing i... The aerospace and aviation industry has long been at the forefront of materials and processing technologies,driven by its ongoing demand for lightweight,highly reliable,and durable components.Precision manufacturing is a critical discipline that directly affects the performance,functionality,and safety of aircraft and aerospace vehicles.To meet the above-mentioned stringent requirements,advanced materials and cutting-edge processing technologies have evolved alongside aerospace innovations. 展开更多
关键词 performance AVIATION mentioned
原文传递
Multi-scale defects in powder-based additively manufactured metals and alloys 被引量:39
2
作者 J.Fu H.Li +1 位作者 X.Song m.w.fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期165-199,共35页
Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM def... Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM defects should be updated.In this review paper,multi-scale defects in AMed metals and alloys are identified and for the first time classified into three categories,including geometry related,surface integrity related and microstructural defects.In particular,the microstructural defects are further divided into internal cracks and pores,textured columnar grains,compositional defects and dislocation cells.The root causes of the multi-scale defects are discussed.The key factors that affect the defect formation are identified and analyzed.The detection methods and modeling of the multi-scale defects are briefly introduced.The effects of the multi-scale defects on the mechanical properties especially for tensile properties and fatigue performance of AMed metallic components are reviewed.Various control and mitigation methods for the corresponding defects,include process parameter control,post processing,alloy design and hybrid AM techniques,are summarized and discussed.From research aspect,current research gaps and future prospects from three important aspects of the multi-scale AM defects are identified and delineated. 展开更多
关键词 Metal additive manufacturing Multi-scale defects Detection and modeling Mechanical properties Defect control and mitigation
原文传递
Effect of ball milling time on microstructure and properties of Laves phase NbCr_2 alloys synthesized by hot pressing 被引量:3
3
作者 肖璇 鲁世强 +2 位作者 胡平 黄铭刚 m.w.fu 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第3期545-551,共7页
Laves phase NbCr2 alloys with a composition of Nb-66.7Cr (molar fraction, %) were prepared by mechanical alloying and hot pressing. The microstructures and properties of the Laves phase NbCr2 alloys, prepared from ele... Laves phase NbCr2 alloys with a composition of Nb-66.7Cr (molar fraction, %) were prepared by mechanical alloying and hot pressing. The microstructures and properties of the Laves phase NbCr2 alloys, prepared from elemental niobium and chromium powders under various ball milling time by hot pressing at 1 250 ℃ for 0.5 h, were investigated. The results indicate that if the ball milling time is longer than 40 h, the synthesizing reaction of Laves phase NbCr2 can be accomplished much sufficiently. Then the nearly full-dense Laves phase NbCr2 alloys can be prepared by hot pressing from ball milled powders with more than 40 h. The hot pressing sample with homogeneous and fine microstructure made from 40 h ball milled powders has the optimum microstructure and properties. It has a relative density of 98.1%, Vickers hardness of 11.4 GPa, compress strength of 1 981 MPa and fracture toughness of 4.82 MPa·m1/2. The effect of fine grain toughening is fully realized. 展开更多
关键词 金合成热压 性能 铬元素 球磨粉末
在线阅读 下载PDF
A novel strategy for ingot cogging without homogenization:Dynamical recrystallization and nucleation mechanisms associated with as-cast dendrites of nickel-based superalloys
4
作者 B.C.Xie Y.W.Luo +3 位作者 Z.T.Wang Q.Q.Meng Y.Q.Ning m.w.fu 《Journal of Materials Science & Technology》 2025年第17期78-91,共14页
Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal defo... Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process. 展开更多
关键词 Superalloys Ingot cogging Dendrites Dynamic recrystallization Nucleation mechanisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部