The boundary plasma turbulence code BOUT models tokamak boundaryplasma turbulence in a realistic divertor geometry usingmodified Braginskii equations for plasma vorticity,density(ni),electron and ion temperature(Te,Ti...The boundary plasma turbulence code BOUT models tokamak boundaryplasma turbulence in a realistic divertor geometry usingmodified Braginskii equations for plasma vorticity,density(ni),electron and ion temperature(Te,Ti)and parallelmomenta.The BOUT code solves for the plasma fluid equations in a three dimensional(3D)toroidal segment(or a toroidal wedge),including the region somewhat inside the separatrix and extending into the scrape-off layer;the private flux region is also included.In this paper,a description is given of the sophisticated physical models,innovative numerical algorithms,and modern software design used to simulate edgeplasmas in magnetic fusion energy devices.The BOUT code’s unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.展开更多
ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma phys...ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma physics in magnetic confinement devices;however ArbiTER should be applicable to other science and engineering fields as well.The code permits a variable numbers of dimensions,making possible application to both fluid and kinetic models.The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.展开更多
基金This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344。
文摘The boundary plasma turbulence code BOUT models tokamak boundaryplasma turbulence in a realistic divertor geometry usingmodified Braginskii equations for plasma vorticity,density(ni),electron and ion temperature(Te,Ti)and parallelmomenta.The BOUT code solves for the plasma fluid equations in a three dimensional(3D)toroidal segment(or a toroidal wedge),including the region somewhat inside the separatrix and extending into the scrape-off layer;the private flux region is also included.In this paper,a description is given of the sophisticated physical models,innovative numerical algorithms,and modern software design used to simulate edgeplasmas in magnetic fusion energy devices.The BOUT code’s unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
文摘ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma physics in magnetic confinement devices;however ArbiTER should be applicable to other science and engineering fields as well.The code permits a variable numbers of dimensions,making possible application to both fluid and kinetic models.The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.