期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Truncation and Rounding-Based Scalable Approximate Multiplier Design for Computer Imaging Applications
1
作者 S.Rooban A.Yamini Naga Ratnam +2 位作者 m.v.s.ramprasad N.Subbulakshmi R.Uma Mageswari 《Computers, Materials & Continua》 SCIE EI 2022年第12期5169-5184,共16页
Advanced technology used for arithmetic computing application,comprises greater number of approximatemultipliers and approximate adders.Truncation and Rounding-based Scalable ApproximateMultiplier(TRSAM)distinguish a ... Advanced technology used for arithmetic computing application,comprises greater number of approximatemultipliers and approximate adders.Truncation and Rounding-based Scalable ApproximateMultiplier(TRSAM)distinguish a variety of modes based on height(h)and truncation(t)as TRSAM(h,t)in the architecture.This TRSAM operation produces higher absolute error in Least Significant Bit(LSB)data shift unit.A new scalable approximate multiplier approach that uses truncation and rounding TRSAM(3,7)is proposed to increase themultiplier accuracy.With the help of foremost one bit architecture,the proposed scalable approximate multiplier approach reduces the partial products.The proposed approximate TRSAM multiplier architecture gives better results in terms of area,delay,and power.The accuracy of 95.2%and the energy utilization of 24.6 nJ is observed in the proposed multiplier design.The proposed approach shows 0.11%,0.23%,and 0.24%less Mean Absolute Relative Error(MARE)when compared with the existing approach for the input of 8-bit,16-bit,and 32-bit respectively.It also shows 0.13%,0.19%,and 0.2%less Variance of Absolute Relative Error(VARE)when compared with the existing approach for the input of 8-bit,16-bit,and 32-bit respectively.The proposed approach is implemented with Field-Programmable Gate Array(FPGA)and shows the delay of 3.640,6.481,12.505,22.572,and 36.893 ns for the input of 8-bit,16-bit,32-bit,64-bit,and 128-bit respectively.The proposed approach is applied in digital filters designwhich shows the Peak-Signal-to-NoiseRatio(PSNR)of 25.05 dB and Structural Similarity Index Measure(SSIM)of 0.98 with 393 pJ energy consumptions when used in image application.The proposed approach is simulated with Xilinx and MATLAB and implemented with FPGA. 展开更多
关键词 Truncation rounding based scalable approximate multiplier foremost one detector field programmable gate array peak-signal-to-noise-ratio structural similarity index measure
在线阅读 下载PDF
Frequency Domain Adaptive Learning Algorithm for Thoracic Electrical Bioimpedance Enhancement
2
作者 Md Zia Ur Rahman S.Rooban +2 位作者 P.Rohini m.v.s.ramprasad Pradeep Vinaik Kodavanti 《Computers, Materials & Continua》 SCIE EI 2022年第9期5713-5726,共14页
The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wand... The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units. 展开更多
关键词 Adaptive learning artifact canceller block processing frequency domain thoracic electrical bioimpedance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部