The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to re...The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
Magnesium and its composites as biodegradable materials offer especial capabilities to be used as bio-absorbable implants.However,their poor corrosion and fatigue properties in the physiological environment can restri...Magnesium and its composites as biodegradable materials offer especial capabilities to be used as bio-absorbable implants.However,their poor corrosion and fatigue properties in the physiological environment can restrict their applications.In this study,corrosion-fatigue tests have been performed on the extruded magnesium and magnesium/hydroxyapatite(Mg/HA)composites in a high cycle regime.To produce the composites,pure magnesium was reinforced by 2.5 wt.%and 5 wt.%of hydroxyapatite submicron particles using an electromagneticmechanical stirring method and hot extrusion process.The experimental density measurement exhibits that the porosity increases in the extruded samples with more hydroxyapatite particles.To investigate the corrosion and corrosion-fatigue behavior of the specimens,simulated body fluid(SBF)was used during in vitro tests.The results of the potentiodynamic polarization corrosion test show that the composite with 2.5 wt.%of hydroxyapatite(Mg/2.5 wt.%HA)and the pure magnesium specimen exhibit the highest and the lowest corrosion resistance,respectively.Regarding the elemental mapping analysis of the corroded samples,this behavior could be due to the formation of strong phosphorus-calcium based layers on the composite surface.The results obtained from the mechanical tests indicate that Mg/5 wt.%HA offered the highest tensile and compressive yield strengths,as well as the most promising high cycle fatigue behavior.During the corrosionfatigue test,the simultaneous effects of fatigue and corrosion damages led to a similar corrosion-fatigue behavior in both composites.The fracture surfaces of the corrosion-fatigue samples suggest that the cracks are initiated in the corroded regions of the samples surface,which reduces the crack initiation step and subsequently decreases the fatigue life.In comparison with the pure magnesium,both composites exhibit more promising corrosion and corrosion-fatigue behaviors with a significant fatigue life improvement in the physiological environment.展开更多
Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were st...Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.展开更多
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
文摘The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
文摘Magnesium and its composites as biodegradable materials offer especial capabilities to be used as bio-absorbable implants.However,their poor corrosion and fatigue properties in the physiological environment can restrict their applications.In this study,corrosion-fatigue tests have been performed on the extruded magnesium and magnesium/hydroxyapatite(Mg/HA)composites in a high cycle regime.To produce the composites,pure magnesium was reinforced by 2.5 wt.%and 5 wt.%of hydroxyapatite submicron particles using an electromagneticmechanical stirring method and hot extrusion process.The experimental density measurement exhibits that the porosity increases in the extruded samples with more hydroxyapatite particles.To investigate the corrosion and corrosion-fatigue behavior of the specimens,simulated body fluid(SBF)was used during in vitro tests.The results of the potentiodynamic polarization corrosion test show that the composite with 2.5 wt.%of hydroxyapatite(Mg/2.5 wt.%HA)and the pure magnesium specimen exhibit the highest and the lowest corrosion resistance,respectively.Regarding the elemental mapping analysis of the corroded samples,this behavior could be due to the formation of strong phosphorus-calcium based layers on the composite surface.The results obtained from the mechanical tests indicate that Mg/5 wt.%HA offered the highest tensile and compressive yield strengths,as well as the most promising high cycle fatigue behavior.During the corrosionfatigue test,the simultaneous effects of fatigue and corrosion damages led to a similar corrosion-fatigue behavior in both composites.The fracture surfaces of the corrosion-fatigue samples suggest that the cracks are initiated in the corroded regions of the samples surface,which reduces the crack initiation step and subsequently decreases the fatigue life.In comparison with the pure magnesium,both composites exhibit more promising corrosion and corrosion-fatigue behaviors with a significant fatigue life improvement in the physiological environment.
文摘Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.