This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing veloci...This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing velocity.The space between these plates contains a Darcy-Forchheimer porous medium.A mixture of water-based fluid with gold(Au)and silicon dioxide(Si O2)nanoparticles is formulated.In contrast to the conventional Fourier's heat flux equation,this study employs the Cattaneo-Christov heat flux equation.A uniform magnetic field is applied perpendicular to the flow direction,invoking magnetohydrodynamic(MHD)effects.Further,the model accounts for Joule heating,which is the heat generated when an electric current passes through the fluid.The problem is solved via NDSolve in MATHEMATICA.Numerical and statistical analyses are conducted to provide insights into the behavior of the nanomaterials between the parallel plates with respect to the flow,energy transport,and skin friction.The findings of this study have potential applications in enhancing cooling systems and optimizing thermal management strategies.It is observed that the squeezing motion generates additional pressure gradients within the fluid,which enhances the flow rate but reduces the frictional drag.Consequently,the fluid is pushed more vigorously between the plates,increasing the flow velocity.As the fluid experiences higher flow rates due to the increased squeezing effect,it spends less time in the region between the plates.The thermal relaxation,however,abruptly changes the temperature,leading to a decrease in the temperature fluctuations.展开更多
A field investigation was conducted to determine the survival and growth rate of eucalyptus (Eucalyptus camaldulensis Dehn.) and guava (Psidium guajava L.) saplings planted in salt-affected soils. The field used was h...A field investigation was conducted to determine the survival and growth rate of eucalyptus (Eucalyptus camaldulensis Dehn.) and guava (Psidium guajava L.) saplings planted in salt-affected soils. The field used was highly saline-sodic in nature with a wide variation in electrical conductivity of the saturated soil extract (ECe), pHs, sodium adsorption ratio (SAR) and gypsum requirement (GR). A randomized complete block design was utilized with three treatments, i.e. T1 = plastic container bags totally removed, T2 = only the plastic container bag's base removed and T3 = plastic container bags un-removed. There were 34 and 8 plants in each block for eucalyptus and guava, correspondingly. The survival rates of eucalyptus and guava saplings were greater than 90%. In addition, gain in eucalyptus height was significantly higher in the T1 treatment where the bags were totally removed while for guava height the treatments were not significant.The gain in girth was not significant for both eucalyptus and guava saplings. With eucalyptus the taproot length was greater than the lateral roots while for guava the lateral roots were longer than the taproots.There was a decrease in the salinity-sodicity of the soils for the upper 30 cm depth under both types of vegetation, indicating that the salts had leached down to the B-horizon.展开更多
A research study was carried out to determine the electrical conductivity (EC), residual sodium carbonate (RSC), sodium adsorption ratio (SAR), pH and metals in metal-polluted irrigation water from a nullah and ...A research study was carried out to determine the electrical conductivity (EC), residual sodium carbonate (RSC), sodium adsorption ratio (SAR), pH and metals in metal-polluted irrigation water from a nullah and those in soils over a period of time, and the effect of metals on rice yield and metal concentrations in rice grain and straw. Two sites (I and If) were selected on the bank of Nullah Dek at Thatta Wasiran in Sheikhupura District (Pakistan), with two rice varieties, Super Basmati and Basmati 385, at both sites. Water samples were collected during rice crop growth at 15-day intervals from August 3 to November 1, 2002. The results showed that Nullah Dek water had an EC 〉1.0 dS m^-1 and RSC of 2.78-4.11 mmolc L^-1, which was hazardous for crops, but the SAR was within the safe limit. Cu, Mn Cd and Sr were also within safe limits. The soil analysis showed that Site Ⅱ was free from salinity/sodicity, whereas Site Ⅰ was saline sodic. Among metals, Zn was sometimes deficient, Cu, Mn and Fe were adequate, and St, Ni and Cd were within safe limits in the soil at both the sites. After the rice crop harvest, concentrations of all metals tested were usually slightly increased, being higher in the upper soil layer than the lower. In addition, Basmati 385 produced higher rice grain and straw yield than Super Basmati. Chemical analysis of rice grain indicated the presence of Zn, Cu, Fe, Mn, Pb and Sr, whereas rice straw contained Zn, Cu, Fe, Mn and Sr, with Cd and Ni both being found in minute quantities.展开更多
The study of non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid along with magnetohydrodynamic(MHD) and non-linear Rosseland thermal radiation over a cylindrical disk in the existence of the time-i...The study of non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid along with magnetohydrodynamic(MHD) and non-linear Rosseland thermal radiation over a cylindrical disk in the existence of the time-independent free stream is considered. Moreover, the notable impacts of thermophoresis and Brownian motion are analyzed by Buongiorno’s model. The momentum, energy, and concentration equations are converted into the dimensionless coupled ordinary differential equations via similarity transformations, which are later numerically solved by altering the values of the pertinent parameters. The numerical and asymptotic solutions for the large shear-to-strain rate ratio γ =a/bfor the parameters of the displacement thicknesses and the wall-shear stress are computed by perturbative expansion and analyzed. Furthermore, the technique bvp4c in MATLAB is deployed as an efficient method to analyze the calculations for the non-dimensional velocities, temperature, displacement thickness, and concentration profiles. It is observed that the two-dimensional displacement thickness parameters α andβ are reduced due to the viscoelasticity and magnetic field effects. Moreover, when the shear-to-strain rate ratio approaches infinity, α is closer to its asymptotic value, while βand the three-dimensional displacement thickness parameter δ1 show the opposite trend.The outcomes of the viscoelasticity and the magnetic field on the skin friction are also determined. It is concluded that ■ reaches its asymptotic behavior when the shearto-strain rate ratio approaches infinity. Meanwhile, ■ shows different results.展开更多
The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the visc...The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.展开更多
文摘This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing velocity.The space between these plates contains a Darcy-Forchheimer porous medium.A mixture of water-based fluid with gold(Au)and silicon dioxide(Si O2)nanoparticles is formulated.In contrast to the conventional Fourier's heat flux equation,this study employs the Cattaneo-Christov heat flux equation.A uniform magnetic field is applied perpendicular to the flow direction,invoking magnetohydrodynamic(MHD)effects.Further,the model accounts for Joule heating,which is the heat generated when an electric current passes through the fluid.The problem is solved via NDSolve in MATHEMATICA.Numerical and statistical analyses are conducted to provide insights into the behavior of the nanomaterials between the parallel plates with respect to the flow,energy transport,and skin friction.The findings of this study have potential applications in enhancing cooling systems and optimizing thermal management strategies.It is observed that the squeezing motion generates additional pressure gradients within the fluid,which enhances the flow rate but reduces the frictional drag.Consequently,the fluid is pushed more vigorously between the plates,increasing the flow velocity.As the fluid experiences higher flow rates due to the increased squeezing effect,it spends less time in the region between the plates.The thermal relaxation,however,abruptly changes the temperature,leading to a decrease in the temperature fluctuations.
基金Project jointly supported by United Nations Development Programme (UNDP) and Australian Agency for International Development (AusAID) (No. PAK/97/024).
文摘A field investigation was conducted to determine the survival and growth rate of eucalyptus (Eucalyptus camaldulensis Dehn.) and guava (Psidium guajava L.) saplings planted in salt-affected soils. The field used was highly saline-sodic in nature with a wide variation in electrical conductivity of the saturated soil extract (ECe), pHs, sodium adsorption ratio (SAR) and gypsum requirement (GR). A randomized complete block design was utilized with three treatments, i.e. T1 = plastic container bags totally removed, T2 = only the plastic container bag's base removed and T3 = plastic container bags un-removed. There were 34 and 8 plants in each block for eucalyptus and guava, correspondingly. The survival rates of eucalyptus and guava saplings were greater than 90%. In addition, gain in eucalyptus height was significantly higher in the T1 treatment where the bags were totally removed while for guava height the treatments were not significant.The gain in girth was not significant for both eucalyptus and guava saplings. With eucalyptus the taproot length was greater than the lateral roots while for guava the lateral roots were longer than the taproots.There was a decrease in the salinity-sodicity of the soils for the upper 30 cm depth under both types of vegetation, indicating that the salts had leached down to the B-horizon.
基金Project supported by the World Wide Fund for Nature Pakistan (WWF-Pakistan).
文摘A research study was carried out to determine the electrical conductivity (EC), residual sodium carbonate (RSC), sodium adsorption ratio (SAR), pH and metals in metal-polluted irrigation water from a nullah and those in soils over a period of time, and the effect of metals on rice yield and metal concentrations in rice grain and straw. Two sites (I and If) were selected on the bank of Nullah Dek at Thatta Wasiran in Sheikhupura District (Pakistan), with two rice varieties, Super Basmati and Basmati 385, at both sites. Water samples were collected during rice crop growth at 15-day intervals from August 3 to November 1, 2002. The results showed that Nullah Dek water had an EC 〉1.0 dS m^-1 and RSC of 2.78-4.11 mmolc L^-1, which was hazardous for crops, but the SAR was within the safe limit. Cu, Mn Cd and Sr were also within safe limits. The soil analysis showed that Site Ⅱ was free from salinity/sodicity, whereas Site Ⅰ was saline sodic. Among metals, Zn was sometimes deficient, Cu, Mn and Fe were adequate, and St, Ni and Cd were within safe limits in the soil at both the sites. After the rice crop harvest, concentrations of all metals tested were usually slightly increased, being higher in the upper soil layer than the lower. In addition, Basmati 385 produced higher rice grain and straw yield than Super Basmati. Chemical analysis of rice grain indicated the presence of Zn, Cu, Fe, Mn, Pb and Sr, whereas rice straw contained Zn, Cu, Fe, Mn and Sr, with Cd and Ni both being found in minute quantities.
文摘The study of non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid along with magnetohydrodynamic(MHD) and non-linear Rosseland thermal radiation over a cylindrical disk in the existence of the time-independent free stream is considered. Moreover, the notable impacts of thermophoresis and Brownian motion are analyzed by Buongiorno’s model. The momentum, energy, and concentration equations are converted into the dimensionless coupled ordinary differential equations via similarity transformations, which are later numerically solved by altering the values of the pertinent parameters. The numerical and asymptotic solutions for the large shear-to-strain rate ratio γ =a/bfor the parameters of the displacement thicknesses and the wall-shear stress are computed by perturbative expansion and analyzed. Furthermore, the technique bvp4c in MATLAB is deployed as an efficient method to analyze the calculations for the non-dimensional velocities, temperature, displacement thickness, and concentration profiles. It is observed that the two-dimensional displacement thickness parameters α andβ are reduced due to the viscoelasticity and magnetic field effects. Moreover, when the shear-to-strain rate ratio approaches infinity, α is closer to its asymptotic value, while βand the three-dimensional displacement thickness parameter δ1 show the opposite trend.The outcomes of the viscoelasticity and the magnetic field on the skin friction are also determined. It is concluded that ■ reaches its asymptotic behavior when the shearto-strain rate ratio approaches infinity. Meanwhile, ■ shows different results.
文摘The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.