The numerical analysis of heat transfer of laminar nanofluid flow over a fiat stretching sheet is presented. Two sets of boundary conditions (BCs) axe analyzed, i.e., a constant (Case 1) and a linear streamwise va...The numerical analysis of heat transfer of laminar nanofluid flow over a fiat stretching sheet is presented. Two sets of boundary conditions (BCs) axe analyzed, i.e., a constant (Case 1) and a linear streamwise variation of nanopaxticle volume fraction and wall temperature (Case 2). The governing equations and BCs axe reduced to a set of nonlinear ordinary differential equations (ODEs) and the corresponding BCs, respectively. The dependencies of solutions on Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt are studied in detail. The results show that the reduced Nusselt number and the reduced Sherwood number increase for the BCs of Case 2 compared with Case 1. The increases of Nb, Nt, and Le numbers cause a decrease of the reduced Nusselt number, while the reduced Sherwood number increases with the increase of Nb and Le numbers. For low Prandtl numbers, an increase of Nt number can cause to decrease in the reduced Sherwood number, while it increases for high Prandtl numbers.展开更多
文摘The numerical analysis of heat transfer of laminar nanofluid flow over a fiat stretching sheet is presented. Two sets of boundary conditions (BCs) axe analyzed, i.e., a constant (Case 1) and a linear streamwise variation of nanopaxticle volume fraction and wall temperature (Case 2). The governing equations and BCs axe reduced to a set of nonlinear ordinary differential equations (ODEs) and the corresponding BCs, respectively. The dependencies of solutions on Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt are studied in detail. The results show that the reduced Nusselt number and the reduced Sherwood number increase for the BCs of Case 2 compared with Case 1. The increases of Nb, Nt, and Le numbers cause a decrease of the reduced Nusselt number, while the reduced Sherwood number increases with the increase of Nb and Le numbers. For low Prandtl numbers, an increase of Nt number can cause to decrease in the reduced Sherwood number, while it increases for high Prandtl numbers.