Social Edge Service(SES)is an emerging mechanism in the Social Internet of Things(SIoT)orchestration for effective user-centric reliable communication and computation.The services are affected by active and/or passive...Social Edge Service(SES)is an emerging mechanism in the Social Internet of Things(SIoT)orchestration for effective user-centric reliable communication and computation.The services are affected by active and/or passive attacks such as replay attacks,message tampering because of sharing the same spectrum,as well as inadequate trust measurement methods among intelligent devices(roadside units,mobile edge devices,servers)during computing and content-sharing.These issues lead to computation and communication overhead of servers and computation nodes.To address this issue,we propose the HybridgrAph-Deep-learning(HAD)approach in two stages for secure communication and computation.First,the Adaptive Trust Weight(ATW)model with relation-based feedback fusion analysis to estimate the fitness-priority of every node based on directed graph theory to detect malicious nodes and reduce computation and communication overhead.Second,a Quotient User-centric Coeval-Learning(QUCL)mechanism to formulate secure channel selection,and Nash equilibrium method for optimizing the communication to share data over edge devices.The simulation results confirm that our proposed approach has achieved effective communication and computation performance,and enhanced Social Edge Services(SES)reliability than state-of-the-art approaches.展开更多
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)applications.Edge devices enable limited computational capacity and energy availability th...Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)applications.Edge devices enable limited computational capacity and energy availability that hamper end user performance.We designed a novel performance measurement index to gauge a device’s resource capacity.This examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided services.In this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float decisions.Consequently,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the network.Our approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation factor.Our system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.展开更多
基金supported in part by Basic Science Research Programs of the Ministry of Education(NRF-2018R1A2B6005105)in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2019R1A5A8080290).
文摘Social Edge Service(SES)is an emerging mechanism in the Social Internet of Things(SIoT)orchestration for effective user-centric reliable communication and computation.The services are affected by active and/or passive attacks such as replay attacks,message tampering because of sharing the same spectrum,as well as inadequate trust measurement methods among intelligent devices(roadside units,mobile edge devices,servers)during computing and content-sharing.These issues lead to computation and communication overhead of servers and computation nodes.To address this issue,we propose the HybridgrAph-Deep-learning(HAD)approach in two stages for secure communication and computation.First,the Adaptive Trust Weight(ATW)model with relation-based feedback fusion analysis to estimate the fitness-priority of every node based on directed graph theory to detect malicious nodes and reduce computation and communication overhead.Second,a Quotient User-centric Coeval-Learning(QUCL)mechanism to formulate secure channel selection,and Nash equilibrium method for optimizing the communication to share data over edge devices.The simulation results confirm that our proposed approach has achieved effective communication and computation performance,and enhanced Social Edge Services(SES)reliability than state-of-the-art approaches.
基金Zulqar and Kim’s research was supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401)+1 种基金Mekala’s research was supported in part by the Basic Science Research Program of the Ministry of Education(NRF-2018R1A2B6005105)in part by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(no.2019R1A5A8080290).
文摘Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)applications.Edge devices enable limited computational capacity and energy availability that hamper end user performance.We designed a novel performance measurement index to gauge a device’s resource capacity.This examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided services.In this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float decisions.Consequently,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the network.Our approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation factor.Our system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.