The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incohere...The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations.展开更多
A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re = 0.01. The capsule is modeled as a liquid drop sur- rounded by a neo-Hookean elastic membrane. The numer- ical m...A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re = 0.01. The capsule is modeled as a liquid drop sur- rounded by a neo-Hookean elastic membrane. The numer- ical model combines immersed boundary with lattice Boltz- mann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular cap- sule. The wall effect becomes stronger as the capsule ini- tial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is de- creased, thus, the capsule motion is slower than the back- ground flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.展开更多
文摘The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations.
文摘A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re = 0.01. The capsule is modeled as a liquid drop sur- rounded by a neo-Hookean elastic membrane. The numer- ical model combines immersed boundary with lattice Boltz- mann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular cap- sule. The wall effect becomes stronger as the capsule ini- tial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is de- creased, thus, the capsule motion is slower than the back- ground flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.