期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PSO-DBNet for Peak-to-Average Power Ratio Reduction Using Deep Belief Network
1
作者 A.Jameer Basha m.ramya devi +3 位作者 S.Lokesh P.Sivaranjani D.Mansoor Hussain Venkat Padhy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1483-1493,共11页
Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at... Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among others.The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network.This transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various techniques.This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.Partial transmit sequence(PTS)helps in the fast transfer of data in wireless LTE.PTS is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G networks.Result indicates that the proposed system outperforms other existing techniques.Therefore,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm optimization.Hence,the specified design supports in improving the proposed PAPR reduction architecture. 展开更多
关键词 5G wireless network orthogonal frequency division multiplexing signal distortion peak to average power ratio partial transmit sequence deep belief network
在线阅读 下载PDF
Intelligent Vehicular Communication Using Vulnerability Scoring Based Routing Protocol
2
作者 m.ramya devi I.Jasmine Selvakumari Jeya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期31-45,共15页
Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including... Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including such self-driving cars.In the existing systems,there is a maximum communication delay while transmitting the messages.The proposed system uses hybrid Cooperative,Vehicular Communication Management Framework called CAMINO(CA).Further it uses,energy efficient fast message routing protocol with Common Vulnerability Scoring System(CVSS)methodology for improving the communication delay,throughput.It improves security while transmitting the messages through networks.In this research,we present a unique intelligent vehicular infrastructure communication management framework.This framework includes additional stability for both short and long-range mobile communications.It also includes built-in cooperative intelligent transport system(C-ITS)capabilities for experimental verification in real-world contexts.In addition,an energy efficient-fast message distribution routing protocol(EE-FMDRP)has been presented.This combines the benefits between both temporal and direction oriented routing methods.This has been suggested for distributing information from the origin ends to the predetermined objective in a quick,accurate,and effective manner in the event of an emergency.The critical value scale score(CVSS)employ ratings to measure the assault probability in Markov chains.Probabilities of chained transitions allow us to statistically evaluate the integrity of a group of IoVassets.Thus the proposed method helps to enhance the vehicular systems.The CAMINO with energy efficient fast protocol using CVSS(CA-EEFP-CVSS)method outperforms in terms of shortest transmission latency achieves 2.6 sec,highest throughput 11.6%,and lowest energy usage 17%and PDR 95.78%. 展开更多
关键词 Intelligent automation intelligent transport system vehicular networks markov chains internet of vehicles critical value scale score
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部