期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel semi-active TMD with folding variable stiffness spring 被引量:2
1
作者 M.H.Rafi eipour A.K.Ghorbani-Tanha +1 位作者 m.rahimian R.Mohammadi-Ghazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期509-518,共10页
An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampe... An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device. 展开更多
关键词 semi-active tuned mass damper variable stiffness folding variable stiffness spring
在线阅读 下载PDF
Asymmetric Green's functions for exponentially graded transversely isotropic substrate–coating system
2
作者 F.Akbari A.Khojasteh m.rahimian 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期169-184,共16页
By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three... By virtue of a complete set of two displacement potentials,an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented.Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations.The formulation includes a complete set of transformed stress–potential and displacement–potential relations,with utilizing Fourier series and Hankel transforms.As illustrations,the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions.Because of complicated integrand functions,the integrals are evaluated numerically and for numerical computation of the integrals,a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration.Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions.Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized. 展开更多
关键词 functionally graded material transversely isotropic BI-MATERIAL Green’s function coating-substrate displacement potential
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部