期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal operating conditions of radial flow moving-bed reactors for isobutane dehydrogenation 被引量:1
1
作者 M.Farsi A.Jahanmiri m.r.rahimpour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期633-638,共6页
In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model ar... In this study, radial flow moving bed reactors for isobutane dehydrogenation have been modeled and simulated heterogeneously based on mass and energy conservation laws. The considered reaction networks in the model are isobutene dehydrogenation as main reaction, and hydrogenolysis, propane dehydrogenation as well as coke formation as side reactions that all occur on the catalyst surface. Then, the process condition has been optimized to produce more isobutene under steady state condition. To prove the accuracy of the considered mathematical model and assumptions, simulation results are compared with the plant data. As a powerful method in the global optimization, the genetic algorithm has been used to optimize the considered objective function. The isobutane conversion and isobutene selectivity under optimal conditions are about 40.1% and 91%, respectively. 展开更多
关键词 isobutane dehydrogenation radial flow reactor heterogeneous modeling OPTIMIZATION
在线阅读 下载PDF
Simultaneous production and utilization of methanol for methyl formate synthesis in a looped heat exchanger reactor configuration
2
作者 A.Goosheneshin R.Maleki +2 位作者 D.Iranshahi m.r.rahimpour A.Jahanmiri 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第6期661-672,共12页
In this investigation, a novel thermally coupled reactor (TCR) containing methyl formate (MF) production in the endothermic side and methanol synthesis in the exothermic side has been investigated. The interesting... In this investigation, a novel thermally coupled reactor (TCR) containing methyl formate (MF) production in the endothermic side and methanol synthesis in the exothermic side has been investigated. The interesting feature of this TCR is that productive methanol in the exothermic side could be recycled and used as feed of endothermic side for MF synthesis. Other important advantages of the proposed system are high production rates of hydrogen and MF. The configuration consists of two thermally coupled concentric tubular reactors. In these coupled reactors, autothermal system is obtained within the reactor. A steady-state heterogeneous model is used for simulation of the coupled reactor. The proposed model has been utilized to compare the performance of TCR with the conventional methanol reactor (CMR). Noticeable enhancement can be obtained in the performance of the reactors. The influence of operational parameters is studied on reactor performance. The results show that coupling of these reactions could be feasible and beneficial. Experimental proof-of-concept is required to validate the operation of the novel reactor. 展开更多
关键词 methyl formate methanol synthesis looped heat exchanger reactor configuration steady-state heterogeneous model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部