For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G i...For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.展开更多
Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k fi...Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k finite groups G such that G ≌P. In this paper we will prove that the group Lp(3), where p 〉 3 is a prime number, is at most 2-recognizable.展开更多
For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element...For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.展开更多
The author will prove that the group ^2Dp(3) can be uniquely determined by its order components, where p ≠ 2^m + 1 is a prime number, p ≥ 5. More precisely, if OC(G) denotes the set of order components of G, we...The author will prove that the group ^2Dp(3) can be uniquely determined by its order components, where p ≠ 2^m + 1 is a prime number, p ≥ 5. More precisely, if OC(G) denotes the set of order components of G, we will prove OC(G) = OC(^2Dp(3)) if and only if G is isomorphic to ^2Dp(3). A main consequence of our result is the validity of Thompson's conjecture for the groups under consideration.展开更多
基金This work has been supported by the Research Institute for Fundamental Sciences Tabriz,Iran.
文摘For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.
基金Supported by the research council of College of Science, the University of Tehran (Grant No. 6103014-1-03)
文摘Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k finite groups G such that G ≌P. In this paper we will prove that the group Lp(3), where p 〉 3 is a prime number, is at most 2-recognizable.
基金This work has been partially sopported by the Research Institute for Fundamental Sciences Tabriz,Iran
文摘For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.
文摘The author will prove that the group ^2Dp(3) can be uniquely determined by its order components, where p ≠ 2^m + 1 is a prime number, p ≥ 5. More precisely, if OC(G) denotes the set of order components of G, we will prove OC(G) = OC(^2Dp(3)) if and only if G is isomorphic to ^2Dp(3). A main consequence of our result is the validity of Thompson's conjecture for the groups under consideration.