The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous me...The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous medium are investigated numeri cally. The governing nonlinear dimensionless equations are solved by an implicit finite difference scheme of the CrankNicolson type with a tridiagonal matrix manipulation. The effects of various parameters entering into the problem on the unsteady dimension less velocity, temperature, and concentration profiles are studied in detail. Furthermore, the time variation of the skin friction coefficient, the Nusselt number, and the Sherwood number is presented and analyzed. The results show that the unsteady velocity, tem perature, and concentration profiles are substantially influenced by the Dufour and Soret effects. When the Dufour number increases or the Soret number decreases, both the skin friction and the Sherwood number decrease, while the Nusselt number increases. It is found that, when the magnetic parameter increases, the velocity and the temperature decrease in the boundary layer.展开更多
文摘The Dufour and Soret effects on the unsteady twodimensional magnetonyaro dynamics (MHD) doublediffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a nonDarcy porous medium are investigated numeri cally. The governing nonlinear dimensionless equations are solved by an implicit finite difference scheme of the CrankNicolson type with a tridiagonal matrix manipulation. The effects of various parameters entering into the problem on the unsteady dimension less velocity, temperature, and concentration profiles are studied in detail. Furthermore, the time variation of the skin friction coefficient, the Nusselt number, and the Sherwood number is presented and analyzed. The results show that the unsteady velocity, tem perature, and concentration profiles are substantially influenced by the Dufour and Soret effects. When the Dufour number increases or the Soret number decreases, both the skin friction and the Sherwood number decrease, while the Nusselt number increases. It is found that, when the magnetic parameter increases, the velocity and the temperature decrease in the boundary layer.