期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
New Measurements for ^(8)He Excited States
1
作者 XIAO Jun YE Yan-Lin +29 位作者 CAO Zhong-Xin JIANG Dong-Xing ZHENG Tao HUA Hui LI Zhi-Huan LI Xiang-Qing GE Yu-Cheng LOU Jian-Ling PANG Dan-Yang LV Lin-Hui LI Qi-Te QIAO Rui YOU Hai-Bo CHEN Rui-Jiu H.Sakurai H.Otsu m.nishimura S.Sakaguchi H.Baba Y.Togano K.Yoneda LI Chen WANG Shuo WANG He LI Kuo-Ang Y.Nakayama Y.Kondo S.Deguchi Y.Satou K.H.Tshoo 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第8期69-72,共4页
Breakup reactions of the double borromean nucleus ^(8)He were measured at 82.3 MeV/u on CH2 and C targets.The coincident detection of two decaying neutrons and the high performance for neutron cross talk rejection are... Breakup reactions of the double borromean nucleus ^(8)He were measured at 82.3 MeV/u on CH2 and C targets.The coincident detection of two decaying neutrons and the high performance for neutron cross talk rejection are realized in this experiment.The relative energy spectrum for ^(8)He was reconstructed with good statistics.The spectrum exhibits a structure of two resonant peaks,one at an excitation energy of about 3.0 and the other at about 4.14 MeV,respectively.Substantially larger cross section for the first resonance is observed in comparison to the results reported previously. 展开更多
关键词 EXPERIMENT MeV/u SPECTRUM
原文传递
充满希望的微纤维
2
作者 m.nishimura 马建兴 《丝绸技术》 1994年第2期43-46,共4页
一、概述70年代微纤维首次投入应用,主要用于人造革,从那以后相继出现了多种微纤维,并用于诸多的领域。“微纤维”的严格定义有待进一步商榷。在日本纺织工业界,小于1.1dtex的聚酯纤维称为微纤维,小于0.33dtex的则称为超微纤维或超微长... 一、概述70年代微纤维首次投入应用,主要用于人造革,从那以后相继出现了多种微纤维,并用于诸多的领域。“微纤维”的严格定义有待进一步商榷。在日本纺织工业界,小于1.1dtex的聚酯纤维称为微纤维,小于0.33dtex的则称为超微纤维或超微长丝。微纤维的主要品种有聚酯微纤维和聚酰胺微纤维或两者混合的微纤维。也有聚丙烯腈或聚酯/聚丙烯微纤维(见表1)。微纤维的制造方法主要有三种,即溶解法、分离法和直接纺丝法。每种方法都有其优缺点(见表2)。用溶解法纺制的纤维,横截面呈“ 展开更多
关键词 微纤维 分类 FSY 应用
在线阅读 下载PDF
Measurement of the integrated luminosity of the Phase 2 data of the Belle Ⅱ experiment 被引量:2
3
作者 F.Abudinén I.Adachi +419 位作者 P.Ahlburg H.Aihara N.Akopov A.Aloisio F.Ameli L.Andricek N.Anh Ky D.M.Asner H.Atmacan T.Aushev V.Aushev T.Aziz K.Azmi V.Babu S.Baehr S.Bahinipati A.M.Bakich P.Bambade Sw.Banerjee S.Bansal V.Bansal M.Barrett J.Baudot A.Beaulieu J.Becker P.K.Behera J.V.Bennett E.Bernieri F.U.Bernlochner M.Bertemes M.Bessner S.Bettarini V.Bhardwaj F.Bianchi T.Bilka S.Bilokin D.Biswas G.Bonvicini A.Bozek M.Bračko P.Branchini N.Braun T.E.Browder A.Budano S.Bussino M.Campajola L.Cao G.Casarosa C.Cecchi D.Červenkov M.-C.Chang P.Chang R.Cheaib V.Chekelian Y.Q.Chen Y.-T.Chen B.G.Cheon K.Chilikin H.-E.Cho K.Cho S.Cho S.-K.Choi S.Choudhury D.Cinabro L.Corona L.M.Cremaldi S.Cunliffe T.Czank F.Dattola E.De La Cruz-Burelo G.De Nardo M.De Nuccio G.De Pietro R.de Sangro M.Destefanis S.Dey A.De Yta-Hernandez F.Di Capua S.Di Carlo J.Dingfelder Z.Doležal I.Domínguez Jiménez T.V.Dong K.Dort S.Dubey S.Duell S.Eidelman M.Eliachevitch T.Ferber D.Ferlewicz G.Finocchiaro S.Fiore A.Fodor F.Forti A.Frey B.G.Fulsom M.Gabriel E.Ganiev M.Garcia-Hernandez R.Garg A.Garmash V.Gaur A.Gaz U.Gebauer A.Gellrich J.Gemmler T.Geßler R.Giordano A.Giri B.Gobbo R.Godang P.Goldenzweig B.Golob P.Gomis P.Grace W.Gradl E.Graziani D.Greenwald C.Hadjivasiliou S.Halder K.Hara T.Hara O.Hartbrich K.Hayasaka H.Hayashii C.Hearty M.T.Hedges I.Heredia de la Cruz M.Hernández Villanueva A.Hershenhorn T.Higuchi E.C.Hill H.Hirata M.Hoek S.Hollitt T.Hotta C.-L.Hsu Y.Hu K.Huang T.Iijima K.Inami G.Inguglia J.Irakkathil Jabbar A.Ishikawa R.Itoh M.Iwasaki Y.Iwasaki S.Iwata P.Jackson W.W.Jacobs D.E.Jaffe E.-J.Jang H.B.Jeon S.Jia Y.Jin C.Joo J.Kahn H.Kakuno A.B.Kaliyar G.Karyan Y.Kato T.Kawasaki H.Kichimi C.Kiesling B.H.Kim C.-H.Kim D.Y.Kim S.-H.Kim Y.K.Kim Y.Kim T.D.Kimmel K.Kinoshita C.Kleinwort B.Knysh P.Kodyš T.Koga I.Komarov T.Konno S.Korpar D.Kotchetkov N.Kovalchuk T.M.G.Kraetzschmar P.Križan R.Kroeger J.F.Krohn P.Krokovny W.Kuehn T.Kuhr M.Kumar R.Kumar K.Kumara S.Kurz A.Kuzmin Y.-J.Kwon S.Lacaprara Y.-T.Lai C.La Licata K.Lalwani L.Lanceri J.S.Lange K.Lautenbach I.-S.Lee S.C.Lee P.Leitl D.Levit P.M.Lewis C.Li L.K.Li S.X.Li Y.M.Li Y.B.Li J.Libby K.Lieret L.Li Gioi J.Lin Z.Liptak Q.Y.Liu D.Liventsev S.Longo A.Loos F.Luetticke T.Luo C.MacQueen Y.Maeda M.Maggiora S.Maity E.Manoni S.Marcello C.Marinas A.Martini M.Masuda K.Matsuoka D.Matvienko J.McNeil J.C.Mei F.Meier M.Merola F.Metzner M.Milesi C.Miller K.Miyabayashi H.Miyata R.Mizuk G.B.Mohanty H.Moon T.Morii H.-G.Moser F.Mueller F.J.Müller Th.Muller R.Mussa K.R.Nakamura E.Nakano M.Nakao H.Nakayama H.Nakazawa M.Nayak G.Nazaryan D.Neverov M.Niiyama N.K.Nisar S.Nishida K.Nishimura m.nishimura M.H.A.Nouxman B.Oberhof S.Ogawa Y.Onishchuk H.Ono Y.Onuki P.Oskin H.Ozaki P.Pakhlov G.Pakhlova A.Paladino T.Pang E.Paoloni H.Park S.-H.Park B.Paschen A.Passeri S.Patra S.Paul T.K.Pedlar I.Peruzzi R.Peschke R.Pestotnik M.Piccolo L.E.Piilonen P.L.M.Podesta-Lerma V.Popov C.Praz E.Prencipe M.T.Prim M.V.Purohit P.Rados M.Remnev P.K.Resmi I.Ripp-Baudot M.Ritter M.Ritzert G.Rizzo L.B.Rizzuto S.H.Robertson D.Rodríguez Pérez J.M.Roney C.Rosenfeld A.Rostomyan N.Rout G.Russo D.Sahoo Y.Sakai D.A.Sanders S.Sandilya A.Sangal L.Santelj P.Sartori Y.Sato V.Savinov B.Scavino M.Schram H.Schreeck J.Schueler C.Schwanda A.J.Schwartz B.Schwenker R.M.Seddon Y.Seino A.Selce K.Senyo M.E.Sevior C.Sfienti C.P.Shen H.Shibuya J.-G.Shiu A.Sibidanov F.Simon S.Skambraks R.J.Sobie A.Soffer A.Sokolov E.Solovieva S.Spataro B.Spruck M.Starič S.Stefkova Z.S.Stottler R.Stroili J.Strube M.Sumihama T.Sumiyoshi D.J.Summers W.Sutcliffe M.Tabata M.Takizawa U.Tamponi S.Tanaka K.Tanida H.Tanigawa N.Taniguchi Y.Tao P.Taras F.Tenchini E.Torassa K.Trabelsi T.Tsuboyama N.Tsuzuki M.Uchida I.Ueda S.Uehara T.Uglov K.Unger Y.Unno S.Uno P.Urquijo Y.Ushiroda S.E.Vahsen R.van Tonder G.S.Varner K.E.Varvell A.Vinokurova L.Vitale A.Vossen E.Waheed H.M.Wakeling K.Wan W.Wan Abdullah B.Wang M.-Z.Wang X.L.Wang A.Warburton M.Watanabe S.Watanuki J.Webb S.Wehle N.Wermes C.Wessel J.Wiechczynski P.Wieduwilt H.Windel E.Won S.Yamada W.Yan S.B.Yang H.Ye J.Yelton J.H.Yin M.Yonenaga Y.M.Yook C.Z.Yuan Y.Yusa L.Zani J.Z.Zhang Z.Zhang V.Zhilich Q.D.Zhou X.Y.Zhou V.I.Zhukova V.Zhulanov A.Zupanc 《Chinese Physics C》 SCIE CAS CSCD 2020年第2期1-12,共12页
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper... From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ. 展开更多
关键词 LUMINOSITY Bhabha digamma Belle II
原文传递
Study of Proton Resonances in ^(22)Mg by Resonant Elastic Scattering of ^(21)Na+p and Its Astrophysical Implication in ^(18)Ne(α,p) ^(21)Na Reaction Rate
4
作者 S.Kubono T.Teranishi +13 位作者 M.Notani H.Baba S.Nishimura J.Y.Moon m.nishimura S.Michimasa H.Iwasaki Y.Yanagisawa N.Hokoiwa M.Kibe J.H.Lee S.Kato Y.Gono C.S.Lee 《原子核物理评论》 CAS CSCD 北大核心 2009年第S1期153-157,共5页
Proton resonant states in 22Mg have been investigated by the resonant elastic scattering of 21Na+p. The 21Na beam with a mean energy of 4.00 MeV/u was separated by the CNS radioactive ion beam separator(CRIB) and bomb... Proton resonant states in 22Mg have been investigated by the resonant elastic scattering of 21Na+p. The 21Na beam with a mean energy of 4.00 MeV/u was separated by the CNS radioactive ion beam separator(CRIB) and bombarded a thick(CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θcm ≈172° and 146°,respectively. A new state at 7.06 MeV has been observed clearly and another new one at 7.28 MeV is tentatively identified due to its low statistics. The proton resonant parameters were deduced from an R-matrix analysis of the differential cross section data. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reaction has been estimated,and it is about five times larger than that assumed before. 展开更多
关键词 NUCLEAR ASTROPHYSICS reaction rate NUCLEAR structure and property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部