The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C co...The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites.展开更多
文摘The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites.