We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
In this paper, we present a new computational approach for solving an internal optimal control problem, which is governed by a linear parabolic partial differential equation. Our approach is to approximate the PDE pro...In this paper, we present a new computational approach for solving an internal optimal control problem, which is governed by a linear parabolic partial differential equation. Our approach is to approximate the PDE problem by a nonhomogeneous ordinary differential equation system in higher dimension. Then, the homogeneous part of ODES is solved using semigroup theory. In the next step, the convergence of this approach is verified by means of Toeplitz matrix. In the rest of the paper, the optimal control problem is solved by utilizing the solution of homogeneous part. Finally, a numerical example is given.展开更多
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
文摘In this paper, we present a new computational approach for solving an internal optimal control problem, which is governed by a linear parabolic partial differential equation. Our approach is to approximate the PDE problem by a nonhomogeneous ordinary differential equation system in higher dimension. Then, the homogeneous part of ODES is solved using semigroup theory. In the next step, the convergence of this approach is verified by means of Toeplitz matrix. In the rest of the paper, the optimal control problem is solved by utilizing the solution of homogeneous part. Finally, a numerical example is given.