A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3...Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.展开更多
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
基金sponsored by the R&D Program in Key Fields of Guangdong Province(No.2019B010936001)the National Natural Science Foundation of China(Grant No.51671202)+1 种基金supported by the National Engineering Laboratory for Marine and Ocean Engineering Power System-Laboratory for Ocean Engineering Gas Turbine。
文摘Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.