Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is e...Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is enhanced by optimizing the geometry and topology for a given mass.The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures.The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact.Furthermore,the influence of thickness,radial connectivity,and order of patterning at the unit cell level are also investigated.The maximum crushing efficiency attained is found to be more than 95%,which is significantly higher than most existing traditional designs.Later on,the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures.Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum.The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure.Moreover,in order to avoid layer-wise weak zones and hence,attain a uniform out-of-plane impact strength,off-setting the designs in each stage is proposed.The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s,respectively.展开更多
This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to im...This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to improve the mechanical properties and wear resistance of the RZ5 alloy used in aerospace application by adding TiC particles.The wear test was performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load.The composite was microstructurally characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).The results exhibited that the tensile strength and hardness of the RZ5-10wt%TiC composite increased considerably while grain size decreased compare to the unreinforced RZ5 alloy.The SEM based fractography indicated mixed mode(quasi-cleavage and ductile feature)failure of the composite.展开更多
In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to ...In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.展开更多
Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and align...Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.展开更多
基金the Science and Engineering Research Board(SERB),Department of Science and Technology,India,for funding this research through grant number SRG/2019/001581。
文摘Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is enhanced by optimizing the geometry and topology for a given mass.The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures.The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact.Furthermore,the influence of thickness,radial connectivity,and order of patterning at the unit cell level are also investigated.The maximum crushing efficiency attained is found to be more than 95%,which is significantly higher than most existing traditional designs.Later on,the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures.Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum.The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure.Moreover,in order to avoid layer-wise weak zones and hence,attain a uniform out-of-plane impact strength,off-setting the designs in each stage is proposed.The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s,respectively.
文摘This paper discusses processing in-situ RZ5-10wt%TiC composite fabricated by self-propagating high temperature(S.H.S)method where RZ5 Mg alloy was the matrix and TiC as reinforcement.The purpose of this study is to improve the mechanical properties and wear resistance of the RZ5 alloy used in aerospace application by adding TiC particles.The wear test was performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load.The composite was microstructurally characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive X-ray spectroscopy(EDS).The results exhibited that the tensile strength and hardness of the RZ5-10wt%TiC composite increased considerably while grain size decreased compare to the unreinforced RZ5 alloy.The SEM based fractography indicated mixed mode(quasi-cleavage and ductile feature)failure of the composite.
文摘In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.
文摘Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.