The effect of metal (Ti, Ni, and Au) electrodes on humidity sensing properties of electrospun TiO2 nanofibers was investigated in this work. The devices were fabricated by evaporating metal contacts on SiO2 layer th...The effect of metal (Ti, Ni, and Au) electrodes on humidity sensing properties of electrospun TiO2 nanofibers was investigated in this work. The devices were fabricated by evaporating metal contacts on SiO2 layer thermally grown on silicon substrate. The separation between the electrodes was 90 μm for all sensors. The sensors were tested from 40% to 90% relative humidity (RH) by AC electrical characterization at room temperature. When sensors are switched between 40% and 90% RH, the corresponding response and recovery time are 3 s and 5 s for Ti-electrode sensor, 4 s and 7 s for Ni-electrode sensor, and 7 s and 13 s for Au-electrode sensor. The hysteresis was 3%, 5% and 15% for sensitivity of Ti, Ni, and Au-electrode sensors are Ti-, Ni-, and Au-electrode sensor, respectively. The 7.53 MΩ/%RH, 5.29 MΩ/%RH and 4.01 MΩ/%RH respectively at 100 Hz. Therefore Ti-electrode sensor is found to have linear response, fast response and recovery time and higher sensitivity as compared with those of Ni- and Au-electrode sensors. Comparison of humidity sensing properties of sensors with different electrode material may propose a compelling route for designing and optimizing humidity sensors.展开更多
Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the a...Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.展开更多
User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must e...User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must ensure that both data and applications that will be stored on the cloud should be protected in a secure environment.The data stored on the public cloud will be vulnerable to outside and inside attacks.This paper provides interactive multi-layer authentication frameworks for securing user identities on the cloud.Different access control policies are applied for verifying users on the cloud.A security mechanism is applied to the cloud application that includes user registration,granting user privileges,and generating user authentication factor.An intrusion detection system is embedded to the security mechanism to detect malicious users.The multi factor authentication,intrusion detection,and access control techniques can be used for ensuring the identity of the user.Finally,encryption techniques are used for protecting the data from being disclosed.Experimental results are carried out to verify the accuracy and efficiency of the proposed frameworks and mechanism.The results recorded high detection rate with low false positive alarms.展开更多
基金support of the Higher Education Commission(HEC),Pakistan
文摘The effect of metal (Ti, Ni, and Au) electrodes on humidity sensing properties of electrospun TiO2 nanofibers was investigated in this work. The devices were fabricated by evaporating metal contacts on SiO2 layer thermally grown on silicon substrate. The separation between the electrodes was 90 μm for all sensors. The sensors were tested from 40% to 90% relative humidity (RH) by AC electrical characterization at room temperature. When sensors are switched between 40% and 90% RH, the corresponding response and recovery time are 3 s and 5 s for Ti-electrode sensor, 4 s and 7 s for Ni-electrode sensor, and 7 s and 13 s for Au-electrode sensor. The hysteresis was 3%, 5% and 15% for sensitivity of Ti, Ni, and Au-electrode sensors are Ti-, Ni-, and Au-electrode sensor, respectively. The 7.53 MΩ/%RH, 5.29 MΩ/%RH and 4.01 MΩ/%RH respectively at 100 Hz. Therefore Ti-electrode sensor is found to have linear response, fast response and recovery time and higher sensitivity as compared with those of Ni- and Au-electrode sensors. Comparison of humidity sensing properties of sensors with different electrode material may propose a compelling route for designing and optimizing humidity sensors.
文摘Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.
文摘User’s data is considered as a vital asset of several organizations.Migrating data to the cloud computing is not an easy decision for any organization due to the privacy and security concerns.Service providers must ensure that both data and applications that will be stored on the cloud should be protected in a secure environment.The data stored on the public cloud will be vulnerable to outside and inside attacks.This paper provides interactive multi-layer authentication frameworks for securing user identities on the cloud.Different access control policies are applied for verifying users on the cloud.A security mechanism is applied to the cloud application that includes user registration,granting user privileges,and generating user authentication factor.An intrusion detection system is embedded to the security mechanism to detect malicious users.The multi factor authentication,intrusion detection,and access control techniques can be used for ensuring the identity of the user.Finally,encryption techniques are used for protecting the data from being disclosed.Experimental results are carried out to verify the accuracy and efficiency of the proposed frameworks and mechanism.The results recorded high detection rate with low false positive alarms.