In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the ...In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the Large High Altitude Air Shower Observation(LHAASO).The extendedγ-ray source was detected with a significance of~16σby KM2A and~17σby WCDA,respectively.The angular extension of this y-ray source is about 0.5 degrees,corresponding to a physical size of about 50pc.We discuss the origin of theγ-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data.Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays(CRs)to at least several hundred TeV.展开更多
We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of ...We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216d.A significant excess of y-ray induced showers is observed both by WCDA in energy bands of 1-25 TeV and KM2A in energy bands of>25 TeV with 7.3σand 13.5σ,respectively.The best-fit position derived through WCDA data is R.A.=42.06°±0.12°and Dec.=60.24°±0.13°with an extension of 0.69°±0.15°and that of the KM2A data is R.A.=42.29°±0.13°and Dec.=60.38°±0.07°with an extension of 0.37°±0.07°.No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band.The most plausible explanation of the VHEγ-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar.These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium,forming a pulsar halo.展开更多
We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events wit...We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events with both WCDA and KM2A.Assuming a point power-law source with a fixed spectral index,the significance maps reveal excesses of 12.65σ,22.18σ,and 10.24σin the energy ranges of 1-25,25-100,and>100 TeV,respectively.We use a 3D likelihood algorithm to derive the morphological and spectral parameters,and the source is detected with significances of 13.72σby WCDA and 25.27σby KM2A.The best-fit positions derived from WCDA and KM2A data are(R.A.=13.96°±0.09°,Decl.=63.92°±0.05°)and(R.A.=14.00°±0.05°,Decl.=63.79°±0.02°),respectively.The angular size(r_(39))of 1LHAASO J0056+6346u is 0.34°±0.04°at 1-25 TeV and 0.24°±0.02°at>25 TeV.The differential flux of this UHEγ-ray source can be described by an exponential cutoff power-law function:(2.67±0.25)×10^(-15)(E/20 TeV)^((-1.97±0.10))e^(-E/(55.1±7.2)TeV)TeV^(-1)cm^(-2)s^(-1).To explore potential sources ofγ-ray emission,we investigated the gas distribution around 1LHAASO J0056+6346u.1LHAASO J0056+6346u is likely to be a TeV PWN powered by an unknown pulsar,which would naturally explain both its spatial and spectral properties.Another explanation is that this UHEγ-ray source might be associated with gas content illuminated by a nearby CR accelerator,possibly the SNR candidate G124.0+1.4.展开更多
The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatial...The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.展开更多
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data ...KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Fiel...Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Field-of-View(FoV)Cherenkov Telescope Array(WFCTA),which is one of the main detectors of LHAASO and has 18 telescopes,is built to achieve this goal.Multiple telescopes are put together and point to connected directions for a larger FoV.Method Telescopes are deployed spatially as close as possible,but due to their own size,the distance between two adjacent telescopes is about 10 m.Therefore,the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes.An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed.The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation.Results and conclusion It is proved that the developed event building process can help to increase the FoV of WFCTA by 30%while maintaining the same reconstruction quality,compared to the separate telescope reconstruction method.展开更多
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det...The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.展开更多
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con...The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).展开更多
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 ...Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented.展开更多
Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Wat...Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12175121,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant No.24NSFSC2319)+2 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the Large High Altitude Air Shower Observation(LHAASO).The extendedγ-ray source was detected with a significance of~16σby KM2A and~17σby WCDA,respectively.The angular extension of this y-ray source is about 0.5 degrees,corresponding to a physical size of about 50pc.We discuss the origin of theγ-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data.Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays(CRs)to at least several hundred TeV.
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant No.24NSFSC2319)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216d.A significant excess of y-ray induced showers is observed both by WCDA in energy bands of 1-25 TeV and KM2A in energy bands of>25 TeV with 7.3σand 13.5σ,respectively.The best-fit position derived through WCDA data is R.A.=42.06°±0.12°and Dec.=60.24°±0.13°with an extension of 0.69°±0.15°and that of the KM2A data is R.A.=42.29°±0.13°and Dec.=60.38°±0.07°with an extension of 0.37°±0.07°.No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band.The most plausible explanation of the VHEγ-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar.These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium,forming a pulsar halo.
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant Nos.24NSFSC2319,and 2024NSFSC0449)+5 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)supported by the National Key R&D Program of China(Grant Nos.2023YFA1608000,and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-SLH047)used data from the Canadian Galactic Plane Survey,a Canadian project with international partners,supported by the Natural Sciences and Engineering Research Council。
文摘We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events with both WCDA and KM2A.Assuming a point power-law source with a fixed spectral index,the significance maps reveal excesses of 12.65σ,22.18σ,and 10.24σin the energy ranges of 1-25,25-100,and>100 TeV,respectively.We use a 3D likelihood algorithm to derive the morphological and spectral parameters,and the source is detected with significances of 13.72σby WCDA and 25.27σby KM2A.The best-fit positions derived from WCDA and KM2A data are(R.A.=13.96°±0.09°,Decl.=63.92°±0.05°)and(R.A.=14.00°±0.05°,Decl.=63.79°±0.02°),respectively.The angular size(r_(39))of 1LHAASO J0056+6346u is 0.34°±0.04°at 1-25 TeV and 0.24°±0.02°at>25 TeV.The differential flux of this UHEγ-ray source can be described by an exponential cutoff power-law function:(2.67±0.25)×10^(-15)(E/20 TeV)^((-1.97±0.10))e^(-E/(55.1±7.2)TeV)TeV^(-1)cm^(-2)s^(-1).To explore potential sources ofγ-ray emission,we investigated the gas distribution around 1LHAASO J0056+6346u.1LHAASO J0056+6346u is likely to be a TeV PWN powered by an unknown pulsar,which would naturally explain both its spatial and spectral properties.Another explanation is that this UHEγ-ray source might be associated with gas content illuminated by a nearby CR accelerator,possibly the SNR candidate G124.0+1.4.
基金in China by the National Natural Science Foundation of China(Grant Nos.12393851,12393854,12393852,12393853,12022502,12205314,12105301,12261160362,12105294,U1931201,and 2024NSFJQ0060)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.
基金supported by the following grants:The National Key R&D program of China under grants 2018YFA0404201the National Natural Science Foundation of China(NSFC)No.12022502,No.12205314,No.12105301,No.12261160362,No.12105294,No.U1931201,No.12393851,No.12393854+1 种基金In Thailand,support was provided by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(N42A650868).
文摘KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金supported by the National Key R&D program of China under grants 2018YFA0404201This research work is also supported by the National Natural Science Foundation of China,with NSFC Grants No.11635011,No.11761141001,No.11905240,No.12105293,No.12105294,No.U2031103,No.U1831208,No.11503021,No.11205126,No.11947404,and No.11675187+2 种基金by IHEP innovation project No.E25451U2by the Science and Technology Department of Sichuan Province 2021YFSY0031by the Xiejialin Foundation of IHEP No.E2546IU2,by RTA6280002 from Thailand Science Research and Innovation in Thailand.
文摘Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Field-of-View(FoV)Cherenkov Telescope Array(WFCTA),which is one of the main detectors of LHAASO and has 18 telescopes,is built to achieve this goal.Multiple telescopes are put together and point to connected directions for a larger FoV.Method Telescopes are deployed spatially as close as possible,but due to their own size,the distance between two adjacent telescopes is about 10 m.Therefore,the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes.An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed.The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation.Results and conclusion It is proved that the developed event building process can help to increase the FoV of WFCTA by 30%while maintaining the same reconstruction quality,compared to the separate telescope reconstruction method.
基金National Natural Science Foundation of China(11903005,11563004,11475190)。
文摘The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.
基金Supported by National Natural Science Foundation of China(11761141001,11635011,11873005)The LHAASO project is supported by the National Key R&D Program of China(2018YFA0404200),the Chinese Academy of Sciences,the Key Laboratory of Particle Astrophysics,IHEP,CAS。
文摘The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).
基金This research work is also supported by following grants.The National Key R&D program of China under the Grant 2018YFA0404201,2018YFA0404202 and 2018YFA0404203by the National Natural Science Foundation of China(NSFC Grants Nos.12022502,No.11905227,No.U1931112,No.11635011,No.11761141001,No.Y811A35,No.11675187,No.U1831208,No.11873005)+1 种基金by the Key R&D Program of SiChuan Province under the Grant 2019ZYZF0001in Thailand by RTA6280002 from Thailand Science Research and Innovation.
文摘Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented.
基金This work is supported by the National Key R&D Program of China under the Grant 2018YFA0404201the Natural Sciences Foundation of China under the Grants 12022502,11635011the Key R&D Program of SiChuan Province under the Grant 2019ZYZF0001.
文摘Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.