Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific...Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.展开更多
In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not ...In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.展开更多
文摘Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
文摘In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.