This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs...This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.展开更多
Colouring of the austenitic stainless steel alloy (20.45% Cr, 8.57% Ni) was carried out in NaNO3-KNO3 eutectic melt without and with additions of Na2O2, NaCl and their mixtures at different temperatures ranging from...Colouring of the austenitic stainless steel alloy (20.45% Cr, 8.57% Ni) was carried out in NaNO3-KNO3 eutectic melt without and with additions of Na2O2, NaCl and their mixtures at different temperatures ranging from 400-600℃, under open-circuit and galvanostatic anodic polarization conditions. The produced colours greatly depend on the thickness of oxide films, which in turn depends on the composition of the molten bath and its temperature. The more attractive, bright, adherent and uniform coloured oxide films can be obtained at 400, 450 and 500℃ in molten nitrate bath containing NaCl and Na2O2 mixtures. The pitting corrosion susceptibility of the coloured oxide films was tested in FeCl3 and NaCl as corrosive media. The obtained results indicate that the pitting corrosion susceptibility of the coloured oxide films greatly depends on the previous operating conditions of the colouring process of the stainless steel specimens such as the composition of molten bath, temperature and technique of colouring process.展开更多
文摘This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.
文摘Colouring of the austenitic stainless steel alloy (20.45% Cr, 8.57% Ni) was carried out in NaNO3-KNO3 eutectic melt without and with additions of Na2O2, NaCl and their mixtures at different temperatures ranging from 400-600℃, under open-circuit and galvanostatic anodic polarization conditions. The produced colours greatly depend on the thickness of oxide films, which in turn depends on the composition of the molten bath and its temperature. The more attractive, bright, adherent and uniform coloured oxide films can be obtained at 400, 450 and 500℃ in molten nitrate bath containing NaCl and Na2O2 mixtures. The pitting corrosion susceptibility of the coloured oxide films was tested in FeCl3 and NaCl as corrosive media. The obtained results indicate that the pitting corrosion susceptibility of the coloured oxide films greatly depends on the previous operating conditions of the colouring process of the stainless steel specimens such as the composition of molten bath, temperature and technique of colouring process.