We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polar...We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineu...We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GWm th were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944± 0.007(stat.) ± 0.003(syst.). An analysis of the relative rates in six detectors finds sin22θ13=0.089± 0.010(stat.)±0.005(syst.) in a three-neutrino framework.展开更多
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight a...A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
基金The Parkes Radio Telescope (Murriyang) is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIROsupported by the National Natural Science Foundation of China (NSFC) grant Nos. 12041303, 12041304, 11873067, 12133004, 12203045, 12203070, 12203072, 12103013, U2031117 and T2241020+11 种基金the CAS-MPG LEGACY project and the National SKA Program of China No. 2020SKA0120200the Foundation of Science and Technology of Guizhou Province No. ((2021)023)the Foundation of Guizhou Provincial Education Department (No.KY(2021)303)the National Key Research and Development Program of China Nos. 2022YFC2205202 and 2022YFC2205203the Major Science and Technology Program of Xinjiang Uygur Autonomous Region Nos. 2022A03013-1, 2022A03013-3 and 2022A03013-4the National Key Research and Development Program of China No. 2022YFC2205203the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites and the Youth Innovation Promotion Association of CAS under No. 2023069support from the Youth Innovation Promotion Association CAS (id. 2021055)CAS Project for Young Scientists in Basic Research (grant YSBR-006)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupport from Zhejiang Provincial Natural Science Foundation of China under grant No. LY23A030001supported by the NSF Physics Frontiers Center award number 2020265。
文摘We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
基金Supported by the Ministry of Science and Technology of Chinathe United States Department of Energy+15 种基金the Chinese Academy of Sciencesthe National Natural Science Foundation of Chinathe Guangdong provincial governmentthe Shenzhen municipal governmentthe China Guangdong Nuclear Power GroupShanghai Laboratory for Particle Physics and Cosmologythe Research Grants Council of the Hong Kong Special Administrative Region of ChinaUniversity Development Fund of The University of Hong Kongthe MOE program for Research of Excellence at NTU, NCTUNSC fund support from Taipeithe U.S. National Science Foundationthe Alfred P. Sloan Foundationthe Ministry of EducationYouth and Sports of the Czech Republicthe Czech Science Foundationthe Joint Institute of Nuclear Research in Dubna,Russia
文摘We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GWm th were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944± 0.007(stat.) ± 0.003(syst.). An analysis of the relative rates in six detectors finds sin22θ13=0.089± 0.010(stat.)±0.005(syst.) in a three-neutrino framework.
基金Supported in part by the Ministry of Science and Technology of Chinathe United States Department of Energy,the Chinese Academy of Sciences+11 种基金the CAS Center for Excellence in Particle Physicsthe National Natural Science Foundation of Chinathe Guangdong provincial governmentthe Shenzhen municipal governmentthe China General Nuclear Power Groupthe Research Grants Council of the Hong Kong Special Administrative Region of Chinathe MOST and MOE in Taiwanthe U.S.National Science Foundationthe Ministry of Education,Youth and Sports of the Czech Republicthe Joint Institute of Nuclear Research in Dubna,Russiathe NSFC-RFBR joint research programthe National Commission for Scientific and Technological Research of Chile
文摘A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.