This study aims to elucidate the connection between the shape factor of GO(graphene oxide)nanoparticles and the behavior of blood-based non-aligned,2-dimensional,incompressible nanofluid flow near stagnation point,und...This study aims to elucidate the connection between the shape factor of GO(graphene oxide)nanoparticles and the behavior of blood-based non-aligned,2-dimensional,incompressible nanofluid flow near stagnation point,under the influence of temperature-dependent viscosity.Appropriate similarity transformations are employed to transform the non-linear partial differential equations(PDEs)into ordinary differential equations(ODEs).The governing equations are subsequently resolved by utilizing the shooting method.The modified Maxwell model is used to estimate the thermal efficiency of the nanofluid affected by different nanoparticle shapes.The impact of various shapes of GO nanoparticles on the velocity and temperature profiles,along with drag forces and heat flux at the stretching boundary,are examined with particular attention to factors such as viscosity changes.Numerical findings are based on the constant concentration of ϕ=5% with nanoparticles measuring 25 nm in size.The influence of different shapes of GO nanoparticles is analyzed for velocity,temperature distributions,as well as drag forces,and heat transfer at the stretching boundary.The velocity profile is highest for spherical-shaped nanoparticles,whereas the blade-shaped particles produced the greatest temperature distribution.Additionally,itwas observed that enhancing the nanoparticles’volume fraction from 1%to 9%significantly improved the temperature profile.Streamline trends are more inclined to the left when the stretching ratio parameter B=0.7 is applied,and a similar pattern is noted for the variable viscosity case with m=0.5.Furthermore,the blade-shaped nanoparticles exhibit the highest thermal conductivity,while the spherical-shaped nanoparticles display the lowest.展开更多
The investigation of Sm-Ce doping on structure,conduction,and dielectric response of Bi_(2)Ca_(2-2x)Sm_(x)CexCoO_(6)(x=0.000,0.025,0.050,0.075)(BCSCCO)are presented.All the specimens were synthesized by a facile synth...The investigation of Sm-Ce doping on structure,conduction,and dielectric response of Bi_(2)Ca_(2-2x)Sm_(x)CexCoO_(6)(x=0.000,0.025,0.050,0.075)(BCSCCO)are presented.All the specimens were synthesized by a facile synthesis technique named the co-precipitation route.X-ray diffraction(XRD)reveals that BCSCCO crystallizes into one phase with space group P21/m.The crystallite size,dislocation density,lattice parameters,lattice strain,unit cell volume,and bulk density were determined using XRD data.The structural properties of Bi_(2)Ca_(2)CoO_(6)were examined using calculations based on the density functional theory.Theoretical and experimental values discrepancy is less than 1%.A scanning electron microscope was used for performing a microstructural analysis.The SEM images demonstrate the homogeneous distribution of grains with a range of sizes(0.054-0.090μm).The alternating current(ac)conductivity,dielectric permittivity,and tangent loss were also studied as a function of frequency(20 Hz-3 MHz)at different temperatures(100-500℃).All synthesized samples were examined using non-linear Debye's function to determine their spreading factor and relaxation time.The specimen with the lowest crystallite size(∼23 nm)exhibits a high dielectric permittivity(∼3.80×10^(6)).The conduction mechanism was examined in the studied samples with the use of Jonscher's power law.The power law indicates that the BCSCCO(x=0.000,0.025)follows correlated barrier hopping,whereas the x=0.050 and 0.075 compositions follow non-overlapping polaron tunneling.The studied specimen Bi_(2)Ca_(1.9)0Sm_(0.05)0Ce_(0.05)_(0)CoO_(6)with the highest density(∼5.65 g/cm^(3))displays a high electrical conductivity(∼46.1 S/cm).These findings correspond to those published for ceramics made from calcium cobaltite using solid-state reactions(5.0-26.0 S/cm).展开更多
The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and fin...The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and finite Hankel transforms.Initially the fluid is at rest,and at time t=0^+, the inner cylinder suddenly begins to translate along the common axis with constant acceleration. The solutions that have been obtained are presented in terms of generalized G functions.Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions.The corresponding solutions for ordinary second grade and Newtonian fluids are obtained as limiting cases of the general solutions.Finally,some characteristics of the motion,as well as the influences of the material and fractional parameters on the fluid motion and a comparison between models,are underlined by graphical illustrations.展开更多
文摘This study aims to elucidate the connection between the shape factor of GO(graphene oxide)nanoparticles and the behavior of blood-based non-aligned,2-dimensional,incompressible nanofluid flow near stagnation point,under the influence of temperature-dependent viscosity.Appropriate similarity transformations are employed to transform the non-linear partial differential equations(PDEs)into ordinary differential equations(ODEs).The governing equations are subsequently resolved by utilizing the shooting method.The modified Maxwell model is used to estimate the thermal efficiency of the nanofluid affected by different nanoparticle shapes.The impact of various shapes of GO nanoparticles on the velocity and temperature profiles,along with drag forces and heat flux at the stretching boundary,are examined with particular attention to factors such as viscosity changes.Numerical findings are based on the constant concentration of ϕ=5% with nanoparticles measuring 25 nm in size.The influence of different shapes of GO nanoparticles is analyzed for velocity,temperature distributions,as well as drag forces,and heat transfer at the stretching boundary.The velocity profile is highest for spherical-shaped nanoparticles,whereas the blade-shaped particles produced the greatest temperature distribution.Additionally,itwas observed that enhancing the nanoparticles’volume fraction from 1%to 9%significantly improved the temperature profile.Streamline trends are more inclined to the left when the stretching ratio parameter B=0.7 is applied,and a similar pattern is noted for the variable viscosity case with m=0.5.Furthermore,the blade-shaped nanoparticles exhibit the highest thermal conductivity,while the spherical-shaped nanoparticles display the lowest.
基金Project supported by the NRPU-Higher Education Commission,Pakistan。
文摘The investigation of Sm-Ce doping on structure,conduction,and dielectric response of Bi_(2)Ca_(2-2x)Sm_(x)CexCoO_(6)(x=0.000,0.025,0.050,0.075)(BCSCCO)are presented.All the specimens were synthesized by a facile synthesis technique named the co-precipitation route.X-ray diffraction(XRD)reveals that BCSCCO crystallizes into one phase with space group P21/m.The crystallite size,dislocation density,lattice parameters,lattice strain,unit cell volume,and bulk density were determined using XRD data.The structural properties of Bi_(2)Ca_(2)CoO_(6)were examined using calculations based on the density functional theory.Theoretical and experimental values discrepancy is less than 1%.A scanning electron microscope was used for performing a microstructural analysis.The SEM images demonstrate the homogeneous distribution of grains with a range of sizes(0.054-0.090μm).The alternating current(ac)conductivity,dielectric permittivity,and tangent loss were also studied as a function of frequency(20 Hz-3 MHz)at different temperatures(100-500℃).All synthesized samples were examined using non-linear Debye's function to determine their spreading factor and relaxation time.The specimen with the lowest crystallite size(∼23 nm)exhibits a high dielectric permittivity(∼3.80×10^(6)).The conduction mechanism was examined in the studied samples with the use of Jonscher's power law.The power law indicates that the BCSCCO(x=0.000,0.025)follows correlated barrier hopping,whereas the x=0.050 and 0.075 compositions follow non-overlapping polaron tunneling.The studied specimen Bi_(2)Ca_(1.9)0Sm_(0.05)0Ce_(0.05)_(0)CoO_(6)with the highest density(∼5.65 g/cm^(3))displays a high electrical conductivity(∼46.1 S/cm).These findings correspond to those published for ceramics made from calcium cobaltite using solid-state reactions(5.0-26.0 S/cm).
文摘The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and finite Hankel transforms.Initially the fluid is at rest,and at time t=0^+, the inner cylinder suddenly begins to translate along the common axis with constant acceleration. The solutions that have been obtained are presented in terms of generalized G functions.Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions.The corresponding solutions for ordinary second grade and Newtonian fluids are obtained as limiting cases of the general solutions.Finally,some characteristics of the motion,as well as the influences of the material and fractional parameters on the fluid motion and a comparison between models,are underlined by graphical illustrations.