NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer)...NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer), to promote mechanical properties of the Ni Ti/SS joints. The joints with different interlayers are all fractured in the weld zone near the Ni Ti side, which is attributed to the enrichment of intermetallic compounds including Fe2 Ti and Ni3 Ti. The fracture mechanisms of different joints are strongly dependent on the types of interlayers, and the joints without interlayer, adding Ni interlayer and adding Fe Ni interlayer exhibit cleavage fracture, intergranular fracture and mixed fracture composed of cleavage and tearing ridge, respectively. Compared with the brittle laves phase Fe2 Ti, Ni3 Ti phase can exhibit certain plasticity, block the crack propagation and change the direction of crack propagation. The composite structure of Ni3 Ti and Fe2 Ti will be formed when the Fe Ni alloy is taken as the interlayer, which provides the joint excellent mechanical properties, with rupture strength of 343 MPa.展开更多
The effect of compressive stress on the stability of reversed austenite in gNi steel was investigated by uni- axial and hydrostatic compression. It was found that the uniaxial compressive pressure promoted the Υ-α t...The effect of compressive stress on the stability of reversed austenite in gNi steel was investigated by uni- axial and hydrostatic compression. It was found that the uniaxial compressive pressure promoted the Υ-α transformation, while the hydrostatic pressure suppressed the -Υ-α transformation. The pressure dependent transformation behavior can be explained according to thermodynamic analysis.展开更多
文摘NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer), to promote mechanical properties of the Ni Ti/SS joints. The joints with different interlayers are all fractured in the weld zone near the Ni Ti side, which is attributed to the enrichment of intermetallic compounds including Fe2 Ti and Ni3 Ti. The fracture mechanisms of different joints are strongly dependent on the types of interlayers, and the joints without interlayer, adding Ni interlayer and adding Fe Ni interlayer exhibit cleavage fracture, intergranular fracture and mixed fracture composed of cleavage and tearing ridge, respectively. Compared with the brittle laves phase Fe2 Ti, Ni3 Ti phase can exhibit certain plasticity, block the crack propagation and change the direction of crack propagation. The composite structure of Ni3 Ti and Fe2 Ti will be formed when the Fe Ni alloy is taken as the interlayer, which provides the joint excellent mechanical properties, with rupture strength of 343 MPa.
基金supported by the National Natural Science Foundation of China under Grant No.50871110
文摘The effect of compressive stress on the stability of reversed austenite in gNi steel was investigated by uni- axial and hydrostatic compression. It was found that the uniaxial compressive pressure promoted the Υ-α transformation, while the hydrostatic pressure suppressed the -Υ-α transformation. The pressure dependent transformation behavior can be explained according to thermodynamic analysis.