We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driv...We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.展开更多
Optical parametric chirped-pulse amplification(OPCPA) [Dubietis et al., Opt. Commun. 88, 437(1992)] implemented by multikilojoule Nd:glass pump lasers is a promising approach to produce ultraintense pulses(>1023 W/...Optical parametric chirped-pulse amplification(OPCPA) [Dubietis et al., Opt. Commun. 88, 437(1992)] implemented by multikilojoule Nd:glass pump lasers is a promising approach to produce ultraintense pulses(>1023 W/cm2).Technologies are being developed to upgrade the OMEGA EP Laser System with the goal to pump an optical parametric amplifier line(EP OPAL) with two of the OMEGA EP beamlines. The resulting ultraintense pulses(1.5 kJ, 20 fs,1024 W/cm2) would be used jointly with picosecond and nanosecond pulses produced by the other two beamlines. A midscale OPAL pumped by the Multi-Terawatt(MTW) laser is being constructed to produce 7.5-J, 15-fs pulses and demonstrate scalable technologies suitable for the upgrade. MTW OPAL will share a target area with the MTW laser(50 J, 1 to 100 ps), enabling several joint-shot configurations. We report on the status of the MTW OPAL system, and the technology development required for this class of all-OPCPA laser system for ultraintense pulses.展开更多
文摘We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.
基金supported by the Department of EnergyNational Nuclear Security Administration under Award Number DE-NA0001944+2 种基金the University of Rochesterthe New York State Energy Research and Development Authoritysponsored by an agency of the U.S.Government
文摘Optical parametric chirped-pulse amplification(OPCPA) [Dubietis et al., Opt. Commun. 88, 437(1992)] implemented by multikilojoule Nd:glass pump lasers is a promising approach to produce ultraintense pulses(>1023 W/cm2).Technologies are being developed to upgrade the OMEGA EP Laser System with the goal to pump an optical parametric amplifier line(EP OPAL) with two of the OMEGA EP beamlines. The resulting ultraintense pulses(1.5 kJ, 20 fs,1024 W/cm2) would be used jointly with picosecond and nanosecond pulses produced by the other two beamlines. A midscale OPAL pumped by the Multi-Terawatt(MTW) laser is being constructed to produce 7.5-J, 15-fs pulses and demonstrate scalable technologies suitable for the upgrade. MTW OPAL will share a target area with the MTW laser(50 J, 1 to 100 ps), enabling several joint-shot configurations. We report on the status of the MTW OPAL system, and the technology development required for this class of all-OPCPA laser system for ultraintense pulses.