期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
利用硫化氢的部分氧化生产氢、硫磺、乙烯和丙烯 被引量:2
1
作者 P.D.CLARK N.I.DOWLING +3 位作者 m.huang S.LUI X.LONG 《硫酸工业》 CAS 2004年第4期1-8,共8页
阐述用硫化氢生产氢、乙烯、丙烯等新技术的基本原理,由于其中涉及元素硫的生产,故可将其作为硫回收总体方案中的一部分。这些工艺的主要优点是,生产每种终端产品时不必输入外部能量,因此燃料消耗大大低于目前采用的氢和烯烃生产工艺。... 阐述用硫化氢生产氢、乙烯、丙烯等新技术的基本原理,由于其中涉及元素硫的生产,故可将其作为硫回收总体方案中的一部分。这些工艺的主要优点是,生产每种终端产品时不必输入外部能量,因此燃料消耗大大低于目前采用的氢和烯烃生产工艺。此外,乙烯和丙烯的产率较高,选择性较好。这些技术的另一个重要方面是,在所谓的石油时代以后,由于可用生物质作为有机原料,并用硫磺作为循环方案的最初氧化剂,故它们是可持续的。 展开更多
关键词 硫化氢 硫回收 部分氧化 烯烃 生产 新技术
在线阅读 下载PDF
自对准单层多晶硅基极和亚微米射极接触高速双极工艺
2
作者 W m.huang 敖玉贵 《微电子学》 CAS CSCD 1991年第4期71-73,共3页
本文介绍了一种单层多晶硅作基极和发射极接触的新型、高性能硅双极晶体管的实验结果,我们把这种结构叫做STRIPE(自对准开槽隔离多晶硅电极)。已提供的发射极/基极多晶硅接触的间隙为0.2μm,0.4μm的发射极宽度是用普通的0.8μm的光刻... 本文介绍了一种单层多晶硅作基极和发射极接触的新型、高性能硅双极晶体管的实验结果,我们把这种结构叫做STRIPE(自对准开槽隔离多晶硅电极)。已提供的发射极/基极多晶硅接触的间隙为0.2μm,0.4μm的发射极宽度是用普通的0.8μm的光刻来完成的。在用多晶硅基极接触的单层多晶硅结构中,可达到的尺寸最小,并且与双层多晶硅结构相差不大,用STRIPE结构,制造出的晶体管的f_T高达33.8GHz。 展开更多
关键词 双极晶体管 工艺 多晶硅基极
在线阅读 下载PDF
STCF conceptual design report (Volume 1): Physics & detector 被引量:5
3
作者 M.Achasov X.C.Ai +457 位作者 L.P.An R.Aliberti Q.An X.Z.Bai Y.Bai O.Bakina A.Barnyakov V.Blinov V.Bobrovnikov D.Bodrov A.Bogomyagkov A.Bondar I.Boyko Z.H.Bu F.M.Cai H.Cai J.J.Cao Q.H.Cao X.Cao Z.Cao Q.Chang K.T.Chao D.Y.Chen H.Chen H.X.Chen J.F.Chen K.Chen L.L.Chen P.Chen S.L.Chen S.M.Chen S.Chen S.P.Chen W.Chen X.Chen X.F.Chen X.R.Chen Y.Chen Y.Q.Chen H.Y.Cheng J.Cheng S.Cheng T.G.Cheng J.P.Dai L.Y.Dai X.C.Dai D.Dedovich A.Denig I.Denisenko J.M.Dias D.Z.Ding L.Y.Dong W.H.Dong V.Druzhinin D.S.Du Y.J.Du Z.G.Du L.M.Duan D.Epifanov Y.L.Fan S.S.Fang Z.J.Fang G.Fedotovich C.Q.Feng X.Feng Y.T.Feng J.L.Fu J.Gao Y.N.Gao P.S.Ge C.Q.Geng L.S.Geng A.Gilman L.Gong T.Gong B.Gou W.Gradl J.L.Gu A.Guevara L.C.Gui A.Q.Guo F.K.Guo J.C.Guo J.Guo Y.P.Guo Z.H.Guo A.Guskov K.L.Han L.Han M.Han X.Q.Hao J.B.He S.Q.He X.G.He Y.L.He Z.B.He Z.X.Heng B.L.Hou T.J.Hou Y.R.Hou C.Y.Hu H.M.Hu K.Hu R.J.Hu W.H.Hu X.H.Hu Y.C.Hu J.Hua G.S.Huang J.S.Huang m.huang Q.Y.Huang W.Q.Huang X.T.Huang X.J.Huang Y.B.Huang Y.S.Huang N.Hüsken V.Ivanov Q.P.Ji J.J.Jia S.Jia Z.K.Jia H.B.Jiang J.Jiang S.Z.Jiang J.B.Jiao Z.Jiao H.J.Jing X.L.Kang X.S.Kang B.C.Ke M.Kenzie A.Khoukaz I.Koop E.Kravchenko A.Kuzmin Y.Lei E.Levichev C.H.Li C.Li D.Y.Li F.Li G.Li G.Li H.B.Li H.Li H.N.Li H.J.Li H.L.Li J.M.Li J.Li L.Li L.Li L.Y.Li N.Li P.R.Li R.H.Li S.Li T.Li W.J.Li X.Li X.H.Li X.Q.Li X.H.Li Y.Li Y.Y.Li Z.J.Li H.Liang J.H.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.Liao C.X.Lin D.X.Lin X.S.Lin B.J.Liu C.W.Liu D.Liu F.Liu G.M.Liu H.B.Liu J.Liu J.J.Liu J.B.Liu K.Liu K.Y.Liu K.Liu L.Liu Q.Liu S.B.Liu T.Liu X.Liu Y.W.Liu Y.Liu Y.L.Liu Z.Q.Liu Z.Y.Liu Z.W.Liu I.Logashenko Y.Long C.G.Lu J.X.Lu N.Lu Q.F.Lü Y.Lu Y.Lu Z.Lu P.Lukin F.J.Luo T.Luo X.F.Luo Y.H.Luo H.J.Lyu X.R.Lyu J.P.Ma P.Ma Y.Ma Y.M.Ma F.Maas S.Malde D.Matvienko Z.X.Meng R.Mitchell A.Nefediev Y.Nefedov S.L.Olsen Q.Ouyang P.Pakhlov G.Pakhlova X.Pan Y.Pan E.Passemar Y.P.Pei H.P.Peng L.Peng X.Y.Peng X.J.Peng K.Peters S.Pivovarov E.Pyata B.B.Qi Y.Q.Qi W.B.Qian Y.Qian C.F.Qiao J.J.Qin J.J.Qin L.Q.Qin X.S.Qin T.L.Qiu J.Rademacker C.F.Redmer H.Y.Sang M.Saur W.Shan X.Y.Shan L.L.Shang M.Shao L.Shekhtman C.P.Shen J.M.Shen Z.T.Shen H.C.Shi X.D.Shi B.Shwartz A.Sokolov J.J.Song W.M.Song Y.Song Y.X.Song A.Sukharev J.F.Sun L.Sun X.M.Sun Y.J.Sun Z.P.Sun J.Tang S.S.Tang Z.B.Tang C.H.Tian J.S.Tian Y.Tian Y.Tikhonov K.Todyshev T.Uglov V.Vorobyev B.D.Wan B.L.Wang B.Wang D.Y.Wang G.Y.Wang G.L.Wang H.L.Wang J.Wang J.H.Wang J.C.Wang M.L.Wang R.Wang R.Wang S.B.Wang W.Wang W.P.Wang X.C.Wang X.D.Wang X.L.Wang X.L.Wang X.P.Wang X.F.Wang Y.D.Wang Y.P.Wang Y.Q.Wang Y.L.Wang Y.G.Wang Z.Y.Wang Z.Y.Wang Z.L.Wang Z.G.Wang D.H.Wei X.L.Wei X.M.Wei Q.G.Wen X.J.Wen G.Wilkinson B.Wu J.J.Wu L.Wu P.Wu T.W.Wu Y.S.Wu L.Xia T.Xiang C.W.Xiao D.Xiao M.Xiao K.P.Xie Y.H.Xie Y.Xing Z.Z.Xing X.N.Xiong F.R.Xu J.Xu L.L.Xu Q.N.Xu X.C.Xu X.P.Xu Y.C.Xu Y.P.Xu Y.Xu Z.Z.Xu D.W.Xuan F.F.Xue L.Yan M.J.Yan W.B.Yan W.C.Yan X.S.Yan B.F.Yang C.Yang H.J.Yang H.R.Yang H.T.Yang J.F.Yang S.L.Yang Y.D.Yang Y.H.Yang Y.S.Yang Y.L.Yang Z.W.Yang Z.Y.Yang D.L.Yao H.Yin X.H.Yin N.Yokozaki S.Y.You Z.Y.You C.X.Yu F.S.Yu G.L.Yu H.L.Yu J.S.Yu J.Q.Yu L.Yuan X.B.Yuan Z.Y.Yuan Y.F.Yue M.Zeng S.Zeng A.L.Zhang B.W.Zhang G.Y.Zhang G.Q.Zhang H.J.Zhang H.B.Zhang J.Y.Zhang J.L.Zhang J.Zhang L.Zhang L.M.Zhang Q.A.Zhang R.Zhang S.L.Zhang T.Zhang X.Zhang Y.Zhang Y.J.Zhang Y.X.Zhang Y.T.Zhang Y.F.Zhang Y.C.Zhang Y.Zhang Y.Zhang Y.M.Zhang Y.L.Zhang Z.H.Zhang Z.Y.Zhang Z.Y.Zhang H.Y.Zhao J.Zhao L.Zhao M.G.Zhao Q.Zhao R.G.Zhao R.P.Zhao Y.X.Zhao Z.G.Zhao Z.X.Zhao A.Zhemchugov B.Zheng L.Zheng Q.B.Zheng R.Zheng Y.H.Zheng X.H.Zhong H.J.Zhou H.Q.Zhou H.Zhou S.H.Zhou X.Zhou X.K.Zhou X.P.Zhou X.R.Zhou Y.L.Zhou Y.Zhou Y.X.Zhou Z.Y.Zhou J.Y.Zhu K.Zhu R.D.Zhu R.L.Zhu S.H.Zhu Y.C.Zhu Z.A.Zhu V.Zhukova V.Zhulanov B.S.Zou Y.B.Zuo 《Frontiers of physics》 SCIE CSCD 2024年第1期1-154,共154页
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of... The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies. 展开更多
关键词 electron–positron collider tau-charm region high luminosity STCF detector conceptual design
原文传递
Four α correlations in nuclear fragmentation: a game of resonances
4
作者 m.huang A.Bonasera +11 位作者 S.Zhang H.Zheng D.X.Wang J.C.Wang N.Song X.Tang L.Lu G.Zhang Z.Kohley M.R.D.Rodrigues Y.G.Ma S.J.Yennello 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期406-413,共8页
Heavy ion collisions near the Fermi energy produce a‘freezout’region where fragments appear and later decay,emitting mainly neutrons,protons,alpha particles,and gamma rays.These decay products carry information abou... Heavy ion collisions near the Fermi energy produce a‘freezout’region where fragments appear and later decay,emitting mainly neutrons,protons,alpha particles,and gamma rays.These decay products carry information about the decaying nuclei.Fragmentation events may result in high yields of boson particles,especially alpha particles,and may carry important information about the nuclear Bose Einstein condensate(BEC).We study‘in medium’fourαcorrelations and link them to the‘fission’of 16O in two 8Be in the ground state or 12C*(Hoyle state)+α.Using novel techniques for the correlation functions,we confirm the resonance of 16O at 15.2 MeV excitation energy,and the possibility of a lower resonance,close to 14.72 MeV.The latter resonance is the result of allαparticles having 92 keV relative kinetic energies. 展开更多
关键词 4αresonance Hoyle state Bose Einstein condensate heavy ion reactions
原文传递
Classical imaging with undetected photons using four-wave mixing in silicon core fibers
5
作者 m.huang D.WU +9 位作者 H.REN L.SHEN T.W.HAWKINS J.BALLATO U.J.GIBSON M.BERESNA R.SLAVíK J.E.SIPE M.LISCIDINI A.C.PEACOCK 《Photonics Research》 SCIE EI CAS CSCD 2023年第2期137-142,共6页
Undetected-photon imaging allows for objects to be imaged in wavelength regions where traditional components are unavailable. Although first demonstrated using quantum sources, recent work has shown that the technique... Undetected-photon imaging allows for objects to be imaged in wavelength regions where traditional components are unavailable. Although first demonstrated using quantum sources, recent work has shown that the technique also holds with classical beams. To date, however, all the research in this area has exploited parametric downconversion processes using bulk nonlinear crystals within free-space systems. Here, we demonstrate undetectedphoton-based imaging using light generated via stimulated four-wave mixing within highly nonlinear silicon fiber waveguides. The silicon fibers have been tapered to have a core diameter of915 nm to engineer the dispersion and reduce the insertion losses, allowing for tight mode confinement over extended lengths to achieve practical nonlinear conversion efficiencies(-30 dB) with modest pump powers(48 m W). Both amplitude and phase images are obtained using classically generated light, confirming the high degree of spatial and phase correlation of our system. The high powers(>10 nW) and long coherence lengths(>4 km) associated with our large fiber-based system result in high contrast and stable images. 展开更多
关键词 MIXING fibers NONLINEAR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部