In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systemati...In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.展开更多
This paper investigated the high cycle fatigue behavior of a forged Mg-7Gd-5Y-1Nd-0.5Zr alloy with different stress concentration factor(Kt),under different stress ratio(R),and along different loading direction.The sm...This paper investigated the high cycle fatigue behavior of a forged Mg-7Gd-5Y-1Nd-0.5Zr alloy with different stress concentration factor(Kt),under different stress ratio(R),and along different loading direction.The smooth specimen(Kt=1),under R=0.1 and along longitude direction,shows a high fatigue strength of 162 MPa at 107 cycles.The fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy exhibits a high sensitive to the notch.Moreover,change of stress ratio from 0.1 to−1 may also result in a bad fatigue property.The flux inclusions were elongated along longitude direction and/or transverse direction during the forging process of the Mg-7Gd-5Y-1Nd-0.5Zr alloy.The interface between the flux inclusion and the matrix may debond and serve as the crack initiation site during the fatigue loading process,leading to the deterioration of the fatigue property along thickness direction and a high anisotropic fatigue behavior between longitude direction and thickness direction.展开更多
基金Project supported by the National Foundation of Natural Science(No.51105350 and No.51301173)project 973(No.2013CB632202)of National Ministry of Science and Technology+1 种基金This work was funded by the National Basic Research Program of China(973 Program)through project No.2013CB632202National Natural Science Foundation of China(NSFC)through projects No.51105350 and No.51301173,respectively.
文摘In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.
基金This work was funded by the National Basic Research Program of China(973 Program)through project No.2013CB632202National Natural Science Foundation of China(NSFC)through projects No.51105350 and No.51301173,respectively.
文摘This paper investigated the high cycle fatigue behavior of a forged Mg-7Gd-5Y-1Nd-0.5Zr alloy with different stress concentration factor(Kt),under different stress ratio(R),and along different loading direction.The smooth specimen(Kt=1),under R=0.1 and along longitude direction,shows a high fatigue strength of 162 MPa at 107 cycles.The fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy exhibits a high sensitive to the notch.Moreover,change of stress ratio from 0.1 to−1 may also result in a bad fatigue property.The flux inclusions were elongated along longitude direction and/or transverse direction during the forging process of the Mg-7Gd-5Y-1Nd-0.5Zr alloy.The interface between the flux inclusion and the matrix may debond and serve as the crack initiation site during the fatigue loading process,leading to the deterioration of the fatigue property along thickness direction and a high anisotropic fatigue behavior between longitude direction and thickness direction.