A reflectarray antenna consisting of asymmetrical patch elements is proposed,which is capable of producing dual linear and dual circular polarized operation at 26GHz frequency.The main purpose of this design is to sup...A reflectarray antenna consisting of asymmetrical patch elements is proposed,which is capable of producing dual linear and dual circular polarized operation at 26GHz frequency.The main purpose of this design is to support four different polarizations using the same patch element.The proposed reflectarray has a single layer configuration with a linearly polarized feed and circular ring slots in the ground plane.Asymmetric patch element is designed from a square patch element by tilting its one vertical side to some optimized inclination.A wide reflection phase range of 600°is obtained with the asymmetric patch element during unit cell measurements.A 332 element circular aperture reflectarray is designed with the proposed configuration and experimentally validated with a linearly polarized prime feed configuration.Two different orientations of mirror and non-mirror asymmetric patch elements on the surface of reflectarray are analyzed.Dual linear polarization is obtained with the mirror orientation of the asymmetric patch elements on the surface of reflectarray.Alternatively,asymmetric patch elements without mirror orientation are demonstrated to produce dual circular polarization with the same linearly polarized feed.A maximum measured gain of 24.4 dB and 26.1 dB is achieved for dual linear and dual circular polarization,respectively.Their respective measured efficiencies are 28%and 41.3%,which are supported by amaximum−3 dB gain bandwidth of 13.8%and 11.5%.The circular polarization operation of the reflectarray is also supported by a 6 dB axial ratio bandwidth of 9.2%.The proposed asymmetric patch reflectarray antenna with polarization diversity,wide bandwidth and high gain is suitable to be used in many high frequency applications of 5G communication.展开更多
This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using ...This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna.The simulated results were verified by the scattering parameter and far-fieldmeasurements of the unit cell and periodic arrays,respectively.Aclose agreement between the simulated and measured results was observed in all the cases.Apart from the unit cells and reflectarray,the waveguide and horn antenna were also fabricated to be used in the measurements.The measured scattering parameter results of the proposed circular ring unit cells provided a maximum reflection loss of 2.8 dB with phase errors below 10°.On the other hand,the measured far-field results of the 20×20 reflectarray antenna provided a maximum gain of 26.45 dB with a maximum 3 dB beam width of 12°and 1 dB gain drop bandwidth of 13.1%.The performance demonstrated by the proposed reflectarray antenna makes it a potential candidate to be used in modern-day applications such as 5th Generation(5G)and 6th Generation(6G)communication systems.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group No.RG-21-12-08.The initials of the authors who receive the grant are:ZAS.The URL of the sponsor’s website:https://units.imamu.edu.sa/deanships/sr/Pages/default.aspx.
文摘A reflectarray antenna consisting of asymmetrical patch elements is proposed,which is capable of producing dual linear and dual circular polarized operation at 26GHz frequency.The main purpose of this design is to support four different polarizations using the same patch element.The proposed reflectarray has a single layer configuration with a linearly polarized feed and circular ring slots in the ground plane.Asymmetric patch element is designed from a square patch element by tilting its one vertical side to some optimized inclination.A wide reflection phase range of 600°is obtained with the asymmetric patch element during unit cell measurements.A 332 element circular aperture reflectarray is designed with the proposed configuration and experimentally validated with a linearly polarized prime feed configuration.Two different orientations of mirror and non-mirror asymmetric patch elements on the surface of reflectarray are analyzed.Dual linear polarization is obtained with the mirror orientation of the asymmetric patch elements on the surface of reflectarray.Alternatively,asymmetric patch elements without mirror orientation are demonstrated to produce dual circular polarization with the same linearly polarized feed.A maximum measured gain of 24.4 dB and 26.1 dB is achieved for dual linear and dual circular polarization,respectively.Their respective measured efficiencies are 28%and 41.3%,which are supported by amaximum−3 dB gain bandwidth of 13.8%and 11.5%.The circular polarization operation of the reflectarray is also supported by a 6 dB axial ratio bandwidth of 9.2%.The proposed asymmetric patch reflectarray antenna with polarization diversity,wide bandwidth and high gain is suitable to be used in many high frequency applications of 5G communication.
基金The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group No.RG-21-12-08.
文摘This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna.The simulated results were verified by the scattering parameter and far-fieldmeasurements of the unit cell and periodic arrays,respectively.Aclose agreement between the simulated and measured results was observed in all the cases.Apart from the unit cells and reflectarray,the waveguide and horn antenna were also fabricated to be used in the measurements.The measured scattering parameter results of the proposed circular ring unit cells provided a maximum reflection loss of 2.8 dB with phase errors below 10°.On the other hand,the measured far-field results of the 20×20 reflectarray antenna provided a maximum gain of 26.45 dB with a maximum 3 dB beam width of 12°and 1 dB gain drop bandwidth of 13.1%.The performance demonstrated by the proposed reflectarray antenna makes it a potential candidate to be used in modern-day applications such as 5th Generation(5G)and 6th Generation(6G)communication systems.