In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the ...In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the Large High Altitude Air Shower Observation(LHAASO).The extendedγ-ray source was detected with a significance of~16σby KM2A and~17σby WCDA,respectively.The angular extension of this y-ray source is about 0.5 degrees,corresponding to a physical size of about 50pc.We discuss the origin of theγ-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data.Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays(CRs)to at least several hundred TeV.展开更多
We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of ...We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216d.A significant excess of y-ray induced showers is observed both by WCDA in energy bands of 1-25 TeV and KM2A in energy bands of>25 TeV with 7.3σand 13.5σ,respectively.The best-fit position derived through WCDA data is R.A.=42.06°±0.12°and Dec.=60.24°±0.13°with an extension of 0.69°±0.15°and that of the KM2A data is R.A.=42.29°±0.13°and Dec.=60.38°±0.07°with an extension of 0.37°±0.07°.No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band.The most plausible explanation of the VHEγ-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar.These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium,forming a pulsar halo.展开更多
We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events wit...We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events with both WCDA and KM2A.Assuming a point power-law source with a fixed spectral index,the significance maps reveal excesses of 12.65σ,22.18σ,and 10.24σin the energy ranges of 1-25,25-100,and>100 TeV,respectively.We use a 3D likelihood algorithm to derive the morphological and spectral parameters,and the source is detected with significances of 13.72σby WCDA and 25.27σby KM2A.The best-fit positions derived from WCDA and KM2A data are(R.A.=13.96°±0.09°,Decl.=63.92°±0.05°)and(R.A.=14.00°±0.05°,Decl.=63.79°±0.02°),respectively.The angular size(r_(39))of 1LHAASO J0056+6346u is 0.34°±0.04°at 1-25 TeV and 0.24°±0.02°at>25 TeV.The differential flux of this UHEγ-ray source can be described by an exponential cutoff power-law function:(2.67±0.25)×10^(-15)(E/20 TeV)^((-1.97±0.10))e^(-E/(55.1±7.2)TeV)TeV^(-1)cm^(-2)s^(-1).To explore potential sources ofγ-ray emission,we investigated the gas distribution around 1LHAASO J0056+6346u.1LHAASO J0056+6346u is likely to be a TeV PWN powered by an unknown pulsar,which would naturally explain both its spatial and spectral properties.Another explanation is that this UHEγ-ray source might be associated with gas content illuminated by a nearby CR accelerator,possibly the SNR candidate G124.0+1.4.展开更多
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0...By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.展开更多
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi...Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.展开更多
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de...Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.展开更多
The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatial...The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.展开更多
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s...Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).展开更多
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si...We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.展开更多
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h...Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).展开更多
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data ...KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12175121,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant No.24NSFSC2319)+2 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the Large High Altitude Air Shower Observation(LHAASO).The extendedγ-ray source was detected with a significance of~16σby KM2A and~17σby WCDA,respectively.The angular extension of this y-ray source is about 0.5 degrees,corresponding to a physical size of about 50pc.We discuss the origin of theγ-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data.Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays(CRs)to at least several hundred TeV.
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant No.24NSFSC2319)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216d.A significant excess of y-ray induced showers is observed both by WCDA in energy bands of 1-25 TeV and KM2A in energy bands of>25 TeV with 7.3σand 13.5σ,respectively.The best-fit position derived through WCDA data is R.A.=42.06°±0.12°and Dec.=60.24°±0.13°with an extension of 0.69°±0.15°and that of the KM2A data is R.A.=42.29°±0.13°and Dec.=60.38°±0.07°with an extension of 0.37°±0.07°.No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band.The most plausible explanation of the VHEγ-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar.These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium,forming a pulsar halo.
基金supported by the National Natural Science Foundation of China(Grant Nos.12393854,12393851,12393852,12393853,12205314,12105301,12305120,12261160362,12105294,U1931201,12375107,and 12173039)the Department of Science and Technology of Sichuan Province,China(Grant Nos.24NSFSC2319,and 2024NSFSC0449)+5 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(Grant No.YSBR-061)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)supported by the National Key R&D Program of China(Grant Nos.2023YFA1608000,and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-SLH047)used data from the Canadian Galactic Plane Survey,a Canadian project with international partners,supported by the Natural Sciences and Engineering Research Council。
文摘We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events with both WCDA and KM2A.Assuming a point power-law source with a fixed spectral index,the significance maps reveal excesses of 12.65σ,22.18σ,and 10.24σin the energy ranges of 1-25,25-100,and>100 TeV,respectively.We use a 3D likelihood algorithm to derive the morphological and spectral parameters,and the source is detected with significances of 13.72σby WCDA and 25.27σby KM2A.The best-fit positions derived from WCDA and KM2A data are(R.A.=13.96°±0.09°,Decl.=63.92°±0.05°)and(R.A.=14.00°±0.05°,Decl.=63.79°±0.02°),respectively.The angular size(r_(39))of 1LHAASO J0056+6346u is 0.34°±0.04°at 1-25 TeV and 0.24°±0.02°at>25 TeV.The differential flux of this UHEγ-ray source can be described by an exponential cutoff power-law function:(2.67±0.25)×10^(-15)(E/20 TeV)^((-1.97±0.10))e^(-E/(55.1±7.2)TeV)TeV^(-1)cm^(-2)s^(-1).To explore potential sources ofγ-ray emission,we investigated the gas distribution around 1LHAASO J0056+6346u.1LHAASO J0056+6346u is likely to be a TeV PWN powered by an unknown pulsar,which would naturally explain both its spatial and spectral properties.Another explanation is that this UHEγ-ray source might be associated with gas content illuminated by a nearby CR accelerator,possibly the SNR candidate G124.0+1.4.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CAS(ZR2022JQ02,ZR2024QA151)supported by Shandong Provincial Natural Science Foundationsupported by the China Postdoctoral Science Foundation(2023M742100)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.
基金supported in part by National Key R&D Program of China(2020YFA0406400,2023YFA1606000,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS(YSBR-101)100 Talents Program of CASCAS Project for Young Scientists in Basic Research(YSBR-117)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.
基金supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(12035009,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmologythe European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement(894790)the German Research Foundation DFG(455635585),the Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology Fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the U.S.Department of Energy(DE-FG02-05ER41374).
文摘Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.
基金in China by the National Natural Science Foundation of China(Grant Nos.12393851,12393854,12393852,12393853,12022502,12205314,12105301,12261160362,12105294,U1931201,and 2024NSFJQ0060)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.
基金Supported in part by National Key R&D Program of China(2023YFA1606000,2023YFA1606704)National Natural Science Foundation of China(NSFC)(12035009,11875170,11635010,11935015,11935016,11935018,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,CAS(YSBR-101)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID)Chile(ANID PIA/APOYO AFB230003)ERC(758462)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaPolish National Science Centre(2024/53/B/ST2/00975)STFC(United Kingdom)Swedish Research Council(2019.04595)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).
基金Supported in part by the National Key R&D Program of China(2023YFA1606000,2020YFA0406400,2020YFA0406300)the National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11875054,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the 100 Talents Program of CAS,the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)the Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,the German Research Foundation DFG(FOR5327)the Istituto Nazionale di Fisica Nucleare,Italy,the Knut and Alice Wallenberg Foundation(2021.0174,2021.0299)the Ministry of Development of Turkey(DPT2006K-120470),the National Research Foundation of Korea(NRF-2022R1A2C1092335)the National Science and Technology Fund of Mongoliathe National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation of Thailand(B16F640076,B50G670107)the Polish National Science Center(2019/35/O/ST2/02907)the Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the US Department of Energy(DE-FG02-05ER41374)。
文摘We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.
基金supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(12205141,11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金Natural Science Foundation of Hunan Province(2024JJ2044)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).
基金supported by the following grants:The National Key R&D program of China under grants 2018YFA0404201the National Natural Science Foundation of China(NSFC)No.12022502,No.12205314,No.12105301,No.12261160362,No.12105294,No.U1931201,No.12393851,No.12393854+1 种基金In Thailand,support was provided by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(N42A650868).
文摘KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.