Heavy-ion-acoustic(HIA) waves in an unmagnetized collisionless plasma system comprising superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions have been investig...Heavy-ion-acoustic(HIA) waves in an unmagnetized collisionless plasma system comprising superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions have been investigated both numerically and analytically. The well-known reductive perturbation method has been used to derive the Kortewegde Vries(K-d V) and Burgers(BG) equations. The parametric regimes for the existence of both the positive and negative solitary and shock waves have been obtained. The effects of adiabaticity of heavy ions and superthermality of electrons,which are found to notably modify the fundamental features(viz. polarity, amplitude, phase speed, etc.) of HIA solitary and shock waves, are precisely studied. The results of our theoretical investigation can be applicable to understand the characteristics and basic nonlinear structures of HIA waves both in space and laboratory plasma situations.展开更多
The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic dege...The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments.展开更多
文摘Heavy-ion-acoustic(HIA) waves in an unmagnetized collisionless plasma system comprising superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions have been investigated both numerically and analytically. The well-known reductive perturbation method has been used to derive the Kortewegde Vries(K-d V) and Burgers(BG) equations. The parametric regimes for the existence of both the positive and negative solitary and shock waves have been obtained. The effects of adiabaticity of heavy ions and superthermality of electrons,which are found to notably modify the fundamental features(viz. polarity, amplitude, phase speed, etc.) of HIA solitary and shock waves, are precisely studied. The results of our theoretical investigation can be applicable to understand the characteristics and basic nonlinear structures of HIA waves both in space and laboratory plasma situations.
文摘The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments.