期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations
1
作者 F.L.Romeo m.dumbser M.Tavelli 《Communications on Applied Mathematics and Computation》 2021年第4期607-647,共41页
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th... A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time. 展开更多
关键词 Incompressible Navier-Stokes equations Semi-implicit space-time discontinuous Galerkin schemes Staggered unstructured meshes Space-time pressure correction method High-order accuracy in space and time
在线阅读 下载PDF
A New Stable Version of the SPH Method in Lagrangian Coordinates 被引量:1
2
作者 A.Ferrari m.dumbser +1 位作者 E.F.Toro A.Armanini 《Communications in Computational Physics》 SCIE 2008年第7期378-404,共27页
The purpose of this paper is to solve some of the trouble spots of the classical SPH method by proposing an alternative approach.First,we focus on the problem of the stability for two different SPH schemes,one is base... The purpose of this paper is to solve some of the trouble spots of the classical SPH method by proposing an alternative approach.First,we focus on the problem of the stability for two different SPH schemes,one is based on the approach of Vila[25]and another is proposed in this article which mimics the classical 1D LaxWendroff scheme.In both approaches the classical SPH artificial viscosity term is removed preserving nevertheless the linear stability of the methods,demonstrated via the von Neumann stability analysis.Moreover,the issue of the consistency for the equations of gas dynamics is analyzed.An alternative approach is proposed that consists of using Godunov-type SPH schemes in Lagrangian coordinates.This not only provides an improvement in accuracy of the numerical solutions,but also assures that the consistency condition on the gradient of the kernel function is satisfied using an equidistant distribution of particles in Lagrangian mass coordinates.Three different Riemann solvers are implemented for the first-order Godunov type SPH schemes in Lagrangian coordinates,namely the Godunov flux based on the exact Riemann solver,the Rusanov flux and a new modified Roe flux,following the work of Munz[17].Some well-known numerical 1D shock tube test cases[22]are solved,comparing the numerical solutions of the Godunov-type SPH schemes in Lagrangian coordinates with the first-order Godunov finite volume method in Eulerian coordinates and the standard SPH scheme with Monaghan’s viscosity term. 展开更多
关键词 SPH meshfree particle methods Riemann solvers gas dynamics in Lagrangian coordinates Godunov type schemes.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部