Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was inves...Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was investigated X-ray diffraction(XRD), Fourier-transformed infrared spectroscopy(FTIR), transmission electron microscopy(TEM), scanni electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The result shows that nano-FHA coated samp presents nano needle-like structure, which is oriented perpendicular to the surface of the substrate with denser and more unifo layers compared to the nano-CDHA coated sample. The nano-FHA coating shows smaller crystallite size(65 nm) compared to t nano-CDHA coating(95 nm); however, CDHA presents thicker layer(19 μm in thickness) compared to the nano-FHA(15 μm thickness). The corrosion behaviour determined by polarization, immersion and hydrogen evolution tests indicates that the nano-FH and nano-CDHA coatings significantly decrease corrosion rate and induce passivation. The nano-FHA and nano-CDHA coatings c accelerate the formation of bone-like apatite layer and significantly decrease the dissolution rate as compared to the uncoated M alloy. The nano-FHA coating provides effective protection to Mg alloy and presents the highest corrosion resistance. Therefore, t nano-FHA coating on Mg alloy is suggested as a great candidate for orthopaedic applications.展开更多
Nitrogen processed, cold sprayed commercially pure(CP)-Al coatings on Mg-based alloys mostly lack acceptable hardness, wear resistance and most importantly are highly susceptible to localized corrosion in chloride con...Nitrogen processed, cold sprayed commercially pure(CP)-Al coatings on Mg-based alloys mostly lack acceptable hardness, wear resistance and most importantly are highly susceptible to localized corrosion in chloride containing solutions. In this research, commercially pure α-Ti top coating having good pitting potential(~1293 mV_(SCE)), high microhardness(HV_(0.025): 263.03) and low wear rate was applied on a CP-Al coated Mg-based alloy using high pressure cold spray technology. Potentiodynamic polarization(PDP) curves indicated that the probability of transition from metastable pits to the stable pits for cold spayed(CS) Al coating is considerably higher compared to that with the CS Ti top coating(for Ti/Al/Mg system). In addition, CS Ti top coating was in the passivation region in most pH ranges even after 48 h immersion in 3.5 wt% NaCl solution. The stored energy in the CS Ti top coating(as a passive metal) was presumed to be responsible for the easy passivation. Immersion tests indicated no obvious pits formation on the intact CS Ti top coating surface and revealed effective corrosion protection performance of the CS double layered noble barrier coatings on Mg alloys in 3.5 wt% NaCl solution even after 264 h.展开更多
文摘Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was investigated X-ray diffraction(XRD), Fourier-transformed infrared spectroscopy(FTIR), transmission electron microscopy(TEM), scanni electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The result shows that nano-FHA coated samp presents nano needle-like structure, which is oriented perpendicular to the surface of the substrate with denser and more unifo layers compared to the nano-CDHA coated sample. The nano-FHA coating shows smaller crystallite size(65 nm) compared to t nano-CDHA coating(95 nm); however, CDHA presents thicker layer(19 μm in thickness) compared to the nano-FHA(15 μm thickness). The corrosion behaviour determined by polarization, immersion and hydrogen evolution tests indicates that the nano-FH and nano-CDHA coatings significantly decrease corrosion rate and induce passivation. The nano-FHA and nano-CDHA coatings c accelerate the formation of bone-like apatite layer and significantly decrease the dissolution rate as compared to the uncoated M alloy. The nano-FHA coating provides effective protection to Mg alloy and presents the highest corrosion resistance. Therefore, t nano-FHA coating on Mg alloy is suggested as a great candidate for orthopaedic applications.
基金the financial support received from the National Science Foundation (NSF-CMMI 2131441) under the direction of Dr.Alexis Lewis。
文摘Nitrogen processed, cold sprayed commercially pure(CP)-Al coatings on Mg-based alloys mostly lack acceptable hardness, wear resistance and most importantly are highly susceptible to localized corrosion in chloride containing solutions. In this research, commercially pure α-Ti top coating having good pitting potential(~1293 mV_(SCE)), high microhardness(HV_(0.025): 263.03) and low wear rate was applied on a CP-Al coated Mg-based alloy using high pressure cold spray technology. Potentiodynamic polarization(PDP) curves indicated that the probability of transition from metastable pits to the stable pits for cold spayed(CS) Al coating is considerably higher compared to that with the CS Ti top coating(for Ti/Al/Mg system). In addition, CS Ti top coating was in the passivation region in most pH ranges even after 48 h immersion in 3.5 wt% NaCl solution. The stored energy in the CS Ti top coating(as a passive metal) was presumed to be responsible for the easy passivation. Immersion tests indicated no obvious pits formation on the intact CS Ti top coating surface and revealed effective corrosion protection performance of the CS double layered noble barrier coatings on Mg alloys in 3.5 wt% NaCl solution even after 264 h.