Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool...Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.展开更多
The experimental investigations on the effect of the fly ash particle size, velocity, impingement angle, and feed rate were done with an emphasis on the effect of erosion on annealed SA 210 GrA1 (A) and normalized S...The experimental investigations on the effect of the fly ash particle size, velocity, impingement angle, and feed rate were done with an emphasis on the effect of erosion on annealed SA 210 GrA1 (A) and normalized SA 210 GrA1 (N) carbon steel economizer-tube materials. Erosion rates were evaluated with different impingement angles ranging from 15° to 90°, at four different velocities of 32.5, 35, 37.5, and 40 m/s, and at four different feed rates of fly ash particles of 2, 4, 6 and 8 g/min. The erodent used was fly ash particles, sizes ranging from 50-250 μm of irregular shapes. Erosion rate is found to be the maximum at the impingement angle of 30°. Erosion rates of the carbon steel tube in different heat treatment conditions, annealed and normalized, at a constant velocity of 32.5 m/s with different angles were studied. In all cases of feed rates, impingement angles, particle sizes, and velocities of fly ash particles, it has been found that the erosion rate of the annealed tube is less than that of the normalized tube. Empirical correlations for erosion rate relating the velocity, size, feed rate, and impingement angle of the particles and elongation property of the target materials were arrived. Morphologies of the eroded surface were examined by scanning electron microscope (SEM).展开更多
A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to ...A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ξ and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.展开更多
文摘Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.
文摘The experimental investigations on the effect of the fly ash particle size, velocity, impingement angle, and feed rate were done with an emphasis on the effect of erosion on annealed SA 210 GrA1 (A) and normalized SA 210 GrA1 (N) carbon steel economizer-tube materials. Erosion rates were evaluated with different impingement angles ranging from 15° to 90°, at four different velocities of 32.5, 35, 37.5, and 40 m/s, and at four different feed rates of fly ash particles of 2, 4, 6 and 8 g/min. The erodent used was fly ash particles, sizes ranging from 50-250 μm of irregular shapes. Erosion rate is found to be the maximum at the impingement angle of 30°. Erosion rates of the carbon steel tube in different heat treatment conditions, annealed and normalized, at a constant velocity of 32.5 m/s with different angles were studied. In all cases of feed rates, impingement angles, particle sizes, and velocities of fly ash particles, it has been found that the erosion rate of the annealed tube is less than that of the normalized tube. Empirical correlations for erosion rate relating the velocity, size, feed rate, and impingement angle of the particles and elongation property of the target materials were arrived. Morphologies of the eroded surface were examined by scanning electron microscope (SEM).
文摘A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ξ and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.