We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schro¨dinger, ...We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schro¨dinger, q-KleinGordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601(2011), EPL 118,61004(2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle.These q-fields are meaningful at very high energies(Te V scale) for q = 1.15, high energies(Ge V scale) for q = 1.001,and low energies(Me V scale) for q =1.000001 [Nucl. Phys. A 955(2016) 16 and references therein].(See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.展开更多
文摘We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schro¨dinger, q-KleinGordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601(2011), EPL 118,61004(2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle.These q-fields are meaningful at very high energies(Te V scale) for q = 1.15, high energies(Ge V scale) for q = 1.001,and low energies(Me V scale) for q =1.000001 [Nucl. Phys. A 955(2016) 16 and references therein].(See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.