期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment 被引量:6
1
作者 m.c.ri D.W.Ding +1 位作者 Y.H.Sun W.H.Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第10期1-6,共6页
The effects of acyclic liquid nitrogen(LN)treatment in a temperature range of-196℃to 50℃on the thermal and magnetic stability of Fe78Si9B13 and Fe73.5Si13.5B9Nb3Cu1 glassy ribbons have been studied.The intrinsic het... The effects of acyclic liquid nitrogen(LN)treatment in a temperature range of-196℃to 50℃on the thermal and magnetic stability of Fe78Si9B13 and Fe73.5Si13.5B9Nb3Cu1 glassy ribbons have been studied.The intrinsic heterogeneities of the metallic glasses can be activated through cryogenic thermal cycling,making irreversible structural changes after the treatment and inducing rejuvenation to the materials.The microstructural changes of both Fe-based metallic glass(MG)and nanocrystalline alloy induced by LN treatment were investigated.The experimental results show that the LN treatment could effectively rejuvenate the Fe-Si-B MGs and change their thermomechanical and magnetic properties.Based on the partially-crystallinity and well-known magnetic constants,the increase of the energy at the order of 10m J/g and magnetic domain wall movement and rotation at the order of 5-6μm and 0.5°-0.8°are found for FINEMET-type amorphous alloy after LN treatment.It is also found that LN treatment can contribute a little stored energy to the magnetic domain wall movement and magnetic domain rotation. 展开更多
关键词 Metallic glasses Cryogenic thermal treatment Soft magnetic materials REJUVENATION Stored energy Domain wall
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部