期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels 被引量:9
1
作者 m.c.niu K.Yang +2 位作者 J.H.Luan W.Wang Z.B.Jiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期52-58,共7页
Control of the formation and stability of reverted austenite is critical in achieving a favorable combination of strength,ductility,and toughness in high-strength steels.In this work,the effects of Cu precipitation on... Control of the formation and stability of reverted austenite is critical in achieving a favorable combination of strength,ductility,and toughness in high-strength steels.In this work,the effects of Cu precipitation on the austenite reversion and mechanical properties of maraging stainless steels were investigated by atom probe tomography,transmission electron microscopy,and mechanical tests.Our results indicate that Cu accelerates the austenite reversion kinetics in two manners:first,Cu,as an austenite stabilizer,increases the equilibrium austenite fraction and hence enhances the chemical driving force for the austenite formation,and second,Cu-rich nanoprecipitates promote the austenite reversion by serving as heterogeneous nucleation sites and providing Ni-enriched chemical conditions through interfacial segregation.In addition,the Cu precipitation hardening compensates the strength drop induced by the formation of soft reverted austenite.During tensile deformation,the metastable reverted austenite transforms to martensite,which substantially improves the ductility and toughness through a transformation-induced plasticity(TRIP)effect.The Cu-added maraging stainless steel exhibits a superior combination of a yield strength of~1.3 GPa,an elongation of~15%,and an impact toughness of~58 J. 展开更多
关键词 Maraging stainless steel TRIP effect Austenite reversion Cu-rich nanoprecipitate
原文传递
Achieving ultrahigh strength and ductility in high-entropy alloys via dual precipitation 被引量:5
2
作者 J.M.Guo B.C.Zhou +6 位作者 S.Qiu H.J.Kong m.c.niu J.H.Luan T.L.Zhang H.Wu Z.B.Jiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期67-77,共11页
The strength-ductility trade-offhas been a longstanding dilemma in metallic materials.Here we report an innovative approach to achieve a high strength-ductility synergy via dual precipitation of sheared and bypassed p... The strength-ductility trade-offhas been a longstanding dilemma in metallic materials.Here we report an innovative approach to achieve a high strength-ductility synergy via dual precipitation of sheared and bypassed precipitates.(Ni_(2) Co_(2) FeCr)_(96-x) Al_(4) Nb_(x)(at.%)alloys strengthened by nanoscale L12 particles and Laves precipitates were selected as a model for this study,and their precipitate microstructures and mechanical properties were thoroughly investigated.The dual-precipitation-strengthened alloys exhibit a yield strength of more than 1400 MPa,an ultimate tensile strength of over 1800 MPa,and a uniform elon-gation of 18%,thus achieving a high strength-ductility synergy.Our analysis reveals that the nanoscale L1_(2) precipitates contribute to the strength via the particle shearing mechanism,whereas the Laves phase provides the strengthening through the Orowan bypass mechanism.The study of deformation microstruc-tures shows that the L1_(2) precipitates are sheared by stacking faults,which facilitates long-range disloca-tion gliding through the matrix.As a result,deformation induces the formation of hierarchical stacking fault networks and immobile Lomer-Cottrell locks,which effectively enhance the work hardening ca-pability and plastic stability,thereby resulting in a high ductility at high strength levels.Dislocations are piled-up against the interface between the Laves precipitates and matrix,which increases the work hardening capability at the early stages of plastic deformation but causes stress concentrations.The dual precipitation strategy may be useful for many other alloys for achieving superior mechanical properties for technological applications. 展开更多
关键词 High-entropy alloy Dual precipitation Precipitation strengthening Deformation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部