期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
满足多款小型化汽油机应用的电动机械增压器性能参数研究 被引量:1
1
作者 H.H.Tran B.Richard +2 位作者 K.Gray m.bassett 陈佳 《国外内燃机》 2017年第3期43-49,共7页
发动机极度小型化是现代内燃机满足新排放法规的1种措施。发动机小型化程度越高,产生的CO2也越少。如此,发动机就需要更高的增压水平来达到更高的扭矩性能。对于目前的传统增压系统来说,低转速下实现瞬时负荷下的高增压是1个值得关注的... 发动机极度小型化是现代内燃机满足新排放法规的1种措施。发动机小型化程度越高,产生的CO2也越少。如此,发动机就需要更高的增压水平来达到更高的扭矩性能。对于目前的传统增压系统来说,低转速下实现瞬时负荷下的高增压是1个值得关注的问题。Aeristech公司已经开发出1款电动机械增压器,与传统涡轮增压器匹配后组成1种新型的两级增压系统,这使得相对简单的小型化汽油发动机可以应用到主流汽车上。鉴于大多数电动增压装置是提供瞬时输出以减轻涡轮迟滞,电动机械增压器更能在稳态下提供空气。因此,电动机械增压器具有双重功能:减轻涡轮迟滞和弥补涡轮增压器或主要增压装置的压气机性能。电动机械增压器既有传统机械增压器的功能,同时又有传统电动增压装置的功能。同时,电动机械增压器可以替代多级涡轮增压器布置中的第一级涡轮增压器。对1款高级的2.0L增压汽油机应用此电动机械增压器进行了仿真,对1款1.2L极度小型化发动机应用此电动机械增压器进行了试验。目前,主要有2种电动机械增压器设计方案:一种使用单独的电动机和控制器(功率电子元件),另一种是将控制器(功率电子元件)和电动机集成为一体。压气机单独作用时有宽广的性能区间和80%的峰值效率,与电动机和控制器(功率电子元件)结合后可以在0.5s以内达到全负荷运行。方案设计时进行了优化使其单位体积最小化和提高其在汽车机舱内布置的灵活性。另外,电动机械增压器已经在MAHLE 3缸直接喷射发动机上进行试验。这款发动机的升功率高达161kW,同时在整个发动机转速区间内扭矩曲线大体上都是平坦的。 展开更多
关键词 电动机械增压器 小型化 性能 直接啧射
在线阅读 下载PDF
Evaluation of ammonia-gasoline co-combustion in a modern spark ignition research engine
2
作者 A.Ambalakatte S.Geng +3 位作者 A.Cairns A.Harrington J.Hall m.bassett 《Carbon Neutrality》 2023年第1期642-658,共17页
Ammonia(NH_(3))is emerging as a potential favoured fuel for longer range decarbonised heavy transport,particularly in the marine sector,predominantly due to highly favourable characteristics as an effective hydrogen c... Ammonia(NH_(3))is emerging as a potential favoured fuel for longer range decarbonised heavy transport,particularly in the marine sector,predominantly due to highly favourable characteristics as an effective hydrogen carrier.This is despite generally unfavourable combustion and toxicity attributes,restricting end use to applications where robust health and safety protocols can always be upheld.In the currently reported work,a spark ignited thermodynamic single cylinder research engine equipped with gasoline direct injection was upgraded to include gaseous ammonia port injection fuelling,with the aim of understanding maximum viable ammonia substitution ratios across the speedload operating map.The work was conducted at varied effective compression ratios under overall stoichiometric conditions,with the spark timing re-optimised for maximum brake torque at all stable logged sites.The experiments included industry standard measurements of combustion,performance,and engine-out emissions(including NH3“slip”).With a geometric compression ratio of 11.2:1,it was found possible to run the engine on pure ammonia at low engine speeds(1000-1800 rpm)and loads of 12 bar net IMEP.When progressively dropping down below this load limit an increasing amount of gasoline co-firing was required to avoid engine misfire.When operating at 1800 rpm and 12 bar net IMEP,all emissions of carbon(CO_(2),CO,unburned hydrocarbons)and NOx decreased considerably when switching to higher NH_(3) substitution ratios,with NOx reduced by~45%at 1800 rpm/12 bar when switching from pure gasoline to pure NH_(3)(associated with longer and cooler combustion).By further increasing the geometric compression ratio to 12.4 and reducing the intake camshaft duration for maximum effective compression ratio,it was possible to operate the engine on pure ammonia at much lower loads in a fully warmed up state(e.g.,linear low load limit line from 1000 rpm/6 bar net IMEP to 1800 rpm/9 bar net IMEP).Under all conditions,the indicated thermal efficiency of the engine was either equivalent to or slightly higher than that obtained using gasoline-only due to the favourable anti-knock rating of NH_(3).Ongoing work is concerned with detailed breakdown of individual NOx species together with measuring the impact of hydrogen enrichment across the operating map. 展开更多
关键词 AMMONIA IC engines Combustion Zero carbon E-fuels Renewable fuels MARITIME
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部