期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Theoretical model of current propagation in a helical coil with varying geometry and screen tube
1
作者 C.L.C.Lacoste A.Hirsch-Passicos +3 位作者 E.d'Humières V.T.Tikhonchuk P.Antici m.bardon 《Matter and Radiation at Extremes》 SCIE EI 2024年第6期29-42,共14页
An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleratio... An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses.We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation.The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations.The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations,which facilitate the design of such coils for future experiments. 展开更多
关键词 helical propagation geometry
在线阅读 下载PDF
Experimental and numerical investigation of the impact of helical coil targets on laser-driven proton and carbon accelerations
2
作者 C.L.C.Lacoste E.Catrix +10 位作者 S.Vallières A.Hirsch-Passicos T.Guilberteau M.Lafargue J.Lopez I.Manek-Hönninger S.Fourmaux D.Raffestin E.d’Humières P.Antici m.bardon 《Matter and Radiation at Extremes》 2025年第3期98-105,共8页
Laser-driven ion acceleration,as produced by interaction of a high-intensity laser with a target,is a growing field of interest.One of the current challenges is to enhance the acceleration process,i.e.,to increase the... Laser-driven ion acceleration,as produced by interaction of a high-intensity laser with a target,is a growing field of interest.One of the current challenges is to enhance the acceleration process,i.e.,to increase the produced ion energy and the ion number and to shape the energy distribution for future applications.In this paper,we investigate the effect of helical coil(HC)targets on the laser-matter interaction process using a 150 TW laser.We demonstrate that HC targets significantly enhance proton acceleration,improving energy bunching and beam focusing and increasing the cutoff energy.For the first time,we extend this analysis to carbon ions,revealing a marked reduction in the number of low-energy carbon ions and the potential for energy bunching and post-acceleration through an optimized HC design.Simulations using the particle-in-cell code SOPHIE confirm the experimental results,providing insights into the current propagation and ion synchronization mechanisms in HCs.Our findings suggest that HC targets can be optimized for multispecies ion acceleration. 展开更多
关键词 helical coil targets laser matter interaction ion energy distribution proton accelera carbon ion acceleration proton acceleration enhance acceleration processieto shape energy distribution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部