We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the...We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror,self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW,respectively,11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.展开更多
A multiwavelength Brillouin/erbium fiber laser (BEFL) with low threshold power is realized. A low threshold power of 3 mW and a wide tuning range of 18 nm can be achieved by controlling the reflected power in the no...A multiwavelength Brillouin/erbium fiber laser (BEFL) with low threshold power is realized. A low threshold power of 3 mW and a wide tuning range of 18 nm can be achieved by controlling the reflected power in the nonlinear optical loop mirror (NOLM). Up to 24 lines with a wavelength spacing of 0,086 nm are generated at the Brillouin pump and at the 1 480-nm pump with -0.5 dBm (0.9 roW) and 25 mW of power, respectively.展开更多
Spectral hole burning (SHB) effects in a gain-flattened erbium-doped fiber amplifier (EDFA) are demonstrated to be significant in the presence of large signal power around the 1530-1532-nm wavelength range. These ...Spectral hole burning (SHB) effects in a gain-flattened erbium-doped fiber amplifier (EDFA) are demonstrated to be significant in the presence of large signal power around the 1530-1532-nm wavelength range. These are the first effects reported in a setup employing equivalent power level distribution of 40 channels ranging from 1530 to 1561 nm. To explain this, the introduction of a new local population variable into the laser equation is required to support the original inversion ratio that is determined by the pump lasers. In the analysis section, spectroscopic parameters and high signal powers are considered to be other contributing parameters to the change in the gain characteristics. An improvement to this theoretical basis is suggested by implementing mathematical modeling to validate similarities between the gain shape of simulation to that obtained in the experiment.展开更多
We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission l...We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission link supports a single channel(1548.51 nm) with a 10 Gbps repeaterless transmission system over 300 km standard single-mode fiber(SSMF). In the system design, two distributed Raman amplifiers(DRAs) were used to improve the signal level propagated along the 300 km SSMF. The co-propagating DRA provided 15 dB on–off gain and the counter-propagating produced 32 dB on–off gain at the signal wavelength. The experiment results show that the post-compensation configuration achieves an optimal performance with a bit error rate at 1 × 10-9.展开更多
基金supported by the Ministry of Higher Education of Malaysia and the Universiti Putra Malaysia under Grant No.05-04-08-0549RU
文摘We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror,self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW,respectively,11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.
基金supported by the National Natural Science Foundation of China under Grant No. 60938003
文摘A multiwavelength Brillouin/erbium fiber laser (BEFL) with low threshold power is realized. A low threshold power of 3 mW and a wide tuning range of 18 nm can be achieved by controlling the reflected power in the nonlinear optical loop mirror (NOLM). Up to 24 lines with a wavelength spacing of 0,086 nm are generated at the Brillouin pump and at the 1 480-nm pump with -0.5 dBm (0.9 roW) and 25 mW of power, respectively.
基金supported by the Ministry of Higher Education, Malaysia, and the Universiti Putra Malaysia under the post-doctoral research fellowship scheme
文摘Spectral hole burning (SHB) effects in a gain-flattened erbium-doped fiber amplifier (EDFA) are demonstrated to be significant in the presence of large signal power around the 1530-1532-nm wavelength range. These are the first effects reported in a setup employing equivalent power level distribution of 40 channels ranging from 1530 to 1561 nm. To explain this, the introduction of a new local population variable into the laser equation is required to support the original inversion ratio that is determined by the pump lasers. In the analysis section, spectroscopic parameters and high signal powers are considered to be other contributing parameters to the change in the gain characteristics. An improvement to this theoretical basis is suggested by implementing mathematical modeling to validate similarities between the gain shape of simulation to that obtained in the experiment.
基金supported by the Telekom Malaysia Berhad(TM)and TM Research & Development Sdn Bhd(RDTC/110782 and RDTC/140859)
文摘We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission link supports a single channel(1548.51 nm) with a 10 Gbps repeaterless transmission system over 300 km standard single-mode fiber(SSMF). In the system design, two distributed Raman amplifiers(DRAs) were used to improve the signal level propagated along the 300 km SSMF. The co-propagating DRA provided 15 dB on–off gain and the counter-propagating produced 32 dB on–off gain at the signal wavelength. The experiment results show that the post-compensation configuration achieves an optimal performance with a bit error rate at 1 × 10-9.